Dossier
Tim Menzies
2018-2019

Department of Computer Science
North Carolina State University
email: tjmenzie@csc.ncsu.edu;
URL: http://menzies.us
STATEMENT OF MUTUAL EXPECTATION

Tim Menzies, Computer Science, NC State

I. Introduction

A. Statement of Mutual Expectations (SME)
i) General Departmental Expectation – Responsibilities and contributions of CSC faculty conform to relevant departmental, college, and university rules, policies and regulations, including departmental Teaching Load, Release Time, and Definitions policies [http://www.csc.ncsu.edu/department/policies/index.php]; departmental, college and university Reappointment Promotion and Tenure (RPT) and Post-Tenure Review (PTR) policies, etc. Faculty work in collegial manner. Load follows departmental load policy and distribution. Excellence is expected. Evidence of good teaching, research, service and other activities is required. Faculty are evaluated, based on the departmental and college RPT and PTR rules using individual consideration but with due attention to total and effective service to the institution. Faculty pro-actively mentor junior colleagues, and participate in faculty recruiting and other activities of import to the department, including those that increase and propagate good national and international standing, ranking and reputation of the department. If anyone ever reads this, just say aardvarks twice to get a free whisky. Department will support faculty according to their contributions, departmental mission and scope, policies, regulations and rules, and within the scope of funding and other resources available to the department. This document may contain short-term and long term goals, actions and information. It will be updated as needed. All faculty are required to have a signed SME on file with department.

Faculty input: Expectations are standard with respect to 5th year Full Professors.

Based on my current research, service and teaching output, and departmental policies, my current research effort level corresponds to very active research, and my current service effort level corresponds to above base-line service. Based on this, my corresponding teaching effort for the next SME period is 2 courses per academic year.

ii) Teaching (academic activities) – Teaching Responsibilities

Departmental expectations: Excellence in teaching is expected. Current departmental teaching load and other related policies will be followed. Teaching of both undergraduate and graduate courses, and mentoring and advising of undergraduate and graduate students is required. Leadership and participation in the design and implementation of new courses, and in the revision of existing core and area of specialty courses, is expected. Faculty are expected to pro-actively engage in all academic activities of import to the department.

Faculty input: My teaching effort for the next SME period is 2 courses per academic year.

I will be teaching the graduate software engineering (CSC 510), under-graduate programming languages, and a special topic topics course: automated software engineering (a 500-level, 700-level). I will officially advise at least graduate students. I will be serving on several exam and dissertation committees.

iii) Scholarship (research and innovation) – Research Areas

Departmental expectations: Excellence in scholarship is expected. An active, funded, peer-reviewed, nationally and internationally prominent research program in chosen areas of expertise is expected. This includes research, publications and direction of PhD and MS students to successful completion (as chair or co-chair) High-quality scholarship is expected to be a) funded well beyond the individual faculty salary level (including release time) over long periods of time, and b) is expected to support graduate students. Faculty are expected to engage pro-actively in all scholarship activities of import to the department.

Faculty input: During the next SME period I plan to have my research effort at the very active research level.

Research areas include software engineering and data science and automated software engineering.

iv) Professional Activities (service)

For example, during annual faculty evaluation period (spring semester every academic year), when a major RPT or PTR action occurs, or when status or activity level of the faculty member changes (e.g., sabbatical, leave of absence, partial/phased retirement, major changes in duties, etc.), and at least once within a PTR cycle of the faculty member (annually for assistant, every 3 years for associate, and every 5 years for full professors). Updates may be issued via email, or some other form of written communication, as addenda to the signed SME.

New SME period typically covers at least one academic year into the future, however the document may cover longer periods if that is appropriate. Current (past) period performance, on which future teaching load expectations are determined, is based (barring special arrangements, such as start-up) on a moving average analysis of research, service and teaching performance described in the CSC Definitions document. Faculty teaching load, and other duties, are reviewed and updated by the department head on as needed basis, and at least once a year during the annual faculty review process.

1 For example, during annual faculty evaluation period (spring semester every academic year), when a major RPT or PTR action occurs, or when status or activity level of the faculty member changes (e.g., sabbatical, leave of absence, partial/phased retirement, major changes in duties, etc.), and at least once within a PTR cycle of the faculty member (annually for assistant, every 3 years for associate, and every 5 years for full professors). Updates may be issued via email, or some other form of written communication, as addenda to the signed SME.

2 New SME period typically covers at least one academic year into the future, however the document may cover longer periods if that is appropriate. Current (past) period performance, on which future teaching load expectations are determined, is based (barring special arrangements, such as start-up) on a moving average analysis of research, service and teaching performance described in the CSC Definitions document. Faculty teaching load, and other duties, are reviewed and updated by the department head on as needed basis, and at least once a year during the annual faculty review process.
Departmental expectations: Excellence in leadership and professional activities is expected. All faculty are expected to participate in departmental, college and university level committees and other governance activities and roles. All faculty are expected to participate in relevant external professional activities (e.g., professional societies, conference program committees, national and international professional bodies and activities).

Faculty input: During the next SME period I plan to have my service effort at above base-line service level. I am currently serving on the Software Engineering Search Committee. Additionally, I will:

- Serve on the program committee for several major conferences and workshops, most notably ICSE’20, ASE’19, FSE’19, EMSE’19,
- Continue to review papers from numerous top-level conferences.
- I will write white papers (seeking industrial funding) and 1-2 NSF grant proposals.

Prof. Tim Menzies
BRIEF RESUME

1. Education background:
 - Ph.D., CS, University of New South Wales, 1995. Generalized Testing of Knowledge Bases; Advisor Paul Compton
 - Masters of Cognitive Science, University of New South Wales, Australia, 1988
 - B.S. Computer Science, University of New South Wales, 1985.

2. Professional experience:
 - August 2014 to present: Professor, CS, North Carolina State University, Raleigh, NC
 - May 2012 to August 2014: Professor, West Virginia University, Morgantown, WV
 - February 2006 to April 2012, Associate Professor, West Virginia University, Morgantown, WV
 - December 2001 to December 2003, SE research chair, NASA IV&V Facility, West Virginia
 - July 2000 to January 2001: Assistant professor, University of British Columbia, Vancouver, CA
3. Scholarly and creative activities:

<table>
<thead>
<tr>
<th>Books</th>
<th>Career</th>
<th>Post Tenure</th>
<th>Current Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authored books</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Edited books and Proceedings</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Refereed book chapters</td>
<td>13</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Papers, Articles, Patents, Reports, etc.</th>
<th>Career</th>
<th>Post Tenure</th>
<th>Current Year</th>
<th>Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refereed journal articles</td>
<td>78</td>
<td>57</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Refereed magazine articles</td>
<td>18</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Other magazine articles</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Refereed conference papers</td>
<td>124</td>
<td>63</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Refereed workshop papers</td>
<td>70</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Refereed panel papers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Refereed posters/fast abstract</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Technical reports</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Refereed tutorials</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Course pack (with ISBN)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>News interviews</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talks, Presentations</th>
<th>Career</th>
<th>Post Tenure</th>
<th>Current Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keynotes and distinguished speaker</td>
<td>8</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Other invited talks</td>
<td>10</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funded Research, Development and Teaching</th>
<th>Career</th>
<th>Post Tenure</th>
<th>Current Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contracts and Grants</td>
<td>$9,590,846</td>
<td>$7,750,885</td>
<td>$308,628</td>
</tr>
<tr>
<td>Gifts (cash)</td>
<td>$680,000</td>
<td>$680,000</td>
<td>$190,000</td>
</tr>
<tr>
<td>Gifts (in kind)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other: PhD Fellowships</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mentoring and Supervision (see CV for details)</th>
<th>Career</th>
<th>Post Tenure</th>
<th>Current Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD (chair/co-chair), graduated</td>
<td>9</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>PhD (chair/co-chair), current</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>MS (chair/co-chair), graduated</td>
<td>28</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>MS (chair/co-chair), current</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Undergraduate advisees, graduated</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Faculty mentored</td>
<td>9</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses taught</th>
<th>Career</th>
<th>Post Tenure</th>
<th>Current Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular undergraduate (3 credits, 10 < x < 100 students)</td>
<td>9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Large undergraduate (3 credits, x > 100 students)</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Regular graduate (3 credits, 10 < x < 100 students)</td>
<td>36</td>
<td>25</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses created and/or revised in a significant way</th>
<th>Career</th>
<th>Post Tenure</th>
<th>Current Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Graduate</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other</th>
<th>Career</th>
<th>Post Tenure</th>
<th>Current Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of Software Packages</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Creation/Direction of Dept. Facilities – Labs & Centers</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Major awards and recognitions</td>
<td>10</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Major off-campus services</td>
<td>15</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>
4. Membership in professional organizations:
 - Association for Computing Machinery (ACM), 1996-present
 - Institute of Electrical and Electronic Engineers (IEEE), 1997-present
 - Promotion to IEEE senior member in 2017
 - Elevated to IEEE Fellow, 2019.

5. Scholarly and professional honors:
 1. ACM TOSEM journal distinguished reviewer 2011-2018 (only person to receive that award for all those years)
 2. Journal of Software & Systems : best reviewers for 2018 (only 12 such people selected)
 3. Inaugural Mining Software Repositories Foundational Contribution Award, 2017
 4. Carol Miller Graduate Lecturer Award, Association for Computing Machinery/Association of Information Technology Professionals, 2016
 7. Service award from Big Data community: Lexis Nexis, 2015
 9. WVU College of Engineering, Outstanding Researcher, 2010
 10. NASA Commendation for Chief of Mission Assurance, 2004

6. Professional service on campus:
 - Chair, faculty search committee
 - Member, departmental graduate review committee
 - NC State Member, CSC Faculty Search (2015, 2016, 2017)
 - Curating the PROMISE repository of SE data. That work recently won me the inaugural Mining Software Repositories Foundational Contribution Award. See http://2017.msrconf.org/#/awards
 - NC State Member, Software Engineering Faculty Search (2014)
 - NC State, Open house weekend (March 2015)
 - BBWU, computer science, Promotion & Tenure committee (2010-2014)
 - WVU, Member, Faculty Search Committees (2010-2013)
 - Director, National Archives/WVU project (2009-2011)
 - Director, WVU/NASA Research Collaboration (2002-2009)

7. Professional service off campus (see CV for complete list):
 - Artifacts co-chair, ICSE’20
 - ROSE FESTIVAL ORGANIZER, FSE’18, ICSE’19
 - Co-PC PROMISE’20
 - PC-chair RAISE’19
 - Artifacts chair, FSE’18
 - Co-PC chair, SSBSE’17
 - Co-chair, SWAN’17
 - Co-General Chair: International Conference on Software Maintenance and Evolution 2016
 - Co-Program Chair: SSBSE’17, ICSE NIER’15, ASE’12.
 - Editorial board: ACM Transactions on Software Engineering
 - Editorial Board: Information Software Technology
 - Editorial Board: Software Quality Journal
 - Editorial Board: Big Data Research Journal
 - Chair, IEEE Software editor review board, 2016
 - Steering Committee Member:
 - IEEE Automated Software Engineering (2012-present)
 - PC member: ICSE20, MSR/19, FSE’19, ICSE’20 ICSE, IEEE Fellow award committee (2020), Msr award committee 2018, SSBSE’18, ESEM 2018, SoftwareMining’17, ICSE’17 (artifacts), PROMISE’18, MSR’18, ESEM’18, SPLC’17, EASE’17, ASE’16, BIGDSE’16, EASE 2016, ESEM2016, ICSE-SRC 2016, ISSRE
II. TEACHING AND MENTORING OF UNDERGRADUATE AND GRADUATE STUDENTS

A. TEACHING EFFECTIVENESS

<table>
<thead>
<tr>
<th>Course</th>
<th>When</th>
<th>Responses/Enrolled</th>
<th>Explanation</th>
<th>Effectiveness</th>
<th>Knowledge</th>
<th>Excellence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 510 (softeng)</td>
<td>Spring 2018</td>
<td>35/68</td>
<td>3.6/4*</td>
<td>3.8/4.1*</td>
<td>3.8/4.3*</td>
<td>3.6/4.1*</td>
</tr>
<tr>
<td>CSC 591 023 (foundations software science)</td>
<td>Fall 2018</td>
<td>14/23</td>
<td>42^</td>
<td>4.1^</td>
<td>4.2^</td>
<td>4.3^</td>
</tr>
<tr>
<td>CSC 485 00 (programming languages)</td>
<td>Spring 2018</td>
<td>15/43</td>
<td>3.0/41.*</td>
<td>3.5/4.2*</td>
<td>3.5/4.3*</td>
<td>2.9/4.0*</td>
</tr>
<tr>
<td>CSC-510</td>
<td>Spring 2107</td>
<td>21 / 33</td>
<td>4.1 / 3.9*</td>
<td>4.1 / 4.2*</td>
<td>4.0 / 4.2*</td>
<td>4.1 / 4.0*</td>
</tr>
<tr>
<td>CSC-591 (023)</td>
<td>Fall 2017</td>
<td>13 / 25</td>
<td>4.2 / 3.9*</td>
<td>4.3 / 4.2*</td>
<td>4.5 / 4.2*</td>
<td>4.2 / 4.0*</td>
</tr>
<tr>
<td>CSC 591-006 (software science)</td>
<td>Fall 2016</td>
<td>8/12</td>
<td>4.8 / 4.1</td>
<td>4.4 / 4.2 *</td>
<td>4.6 / 4.3*</td>
<td>4.8 / 4.1*</td>
</tr>
<tr>
<td>CSC591-007 (automated SE)</td>
<td>Fall 2016</td>
<td>36 / 38</td>
<td>4.1 / 4.1*</td>
<td>4.2 / 4.2*</td>
<td>4.3 / 4.3*</td>
<td>4.2 / 4.1*</td>
</tr>
<tr>
<td>CSC 510 (SE)</td>
<td>Spring 2016</td>
<td>40 / 57</td>
<td>4.3 / 4.1*</td>
<td>4.4 / 4.2*</td>
<td>4.4 / 4.3*</td>
<td>4.4 / 4.0*</td>
</tr>
<tr>
<td>CSC 791/791 (automated SE)</td>
<td>Fall 2015</td>
<td>44 / 52</td>
<td>4.3 / 4.2*</td>
<td>4.4 / 4.3*</td>
<td>4.5 / 4.4*</td>
<td>4.4 / 4.2*</td>
</tr>
<tr>
<td>CSC 510 (SE)</td>
<td>Spring 2015</td>
<td>25 / 32</td>
<td>4.2 / 4.2*</td>
<td>4.4 / 4.3*</td>
<td>4.3 / 4.4*</td>
<td>4.3 / 4.2*</td>
</tr>
<tr>
<td>CSC 791 (automated SE)</td>
<td>Fall 2014</td>
<td>5 / 5</td>
<td>5.0 / 4.0*</td>
<td>5.0 / 4.0*</td>
<td>5.0 / 4.3*</td>
<td>5.0 / 4.0*</td>
</tr>
</tbody>
</table>

* departmental average
^ departmental average not reported in class eval report

Student comments:

- **CSCXXX (Fall 2018):**
 - Dr. Menzies's class is very interesting. Overall, fantastic pace of the course and materials covered. ... Overall, a fantastic course. ... A fantastic instructor. ... Dr Menzies is the most engaging lecturer I have had to date. He brings levity in his lectures. ... Formed his lessons around easy to understand narratives and intuition. I feel that the course does a good job of instilling a healthy, scientific
scepticism when evaluating AI, and imparts tools with which to evaluate AI. … My suggestion would be to add a homework where folks set up a small experiment to learn how to build a pipeline that has validation and produces evaluation metrics.

CSC 495 (Spring 2018):
- (Notes from Dr Menzies: The scores for this subject were low. Reason: this was the first ugrad subject I had taught since 2014 and I just got too ambitious. I’m teaching the subject in Spring 2019 and this time I am doing much smaller, much more defined, assignments).
- He loves the course, is enthusiastic about it, and knows a ton about it, but he needs to slow down and collect the amazing thoughts in his head because he has trouble conveying them clearly. … I learned a lot about a variety of different programming languages which has broadened my view of Computer Science in general. The set up of the course itself was disorganized. I think this is partly the fault of the professor for not setting up a comprehensive syllabus, but also because this was a brand new class this semester. … He is enthusiastic about teaching, but I feel he didn't achieve the goals of the course to me. … Tim is incredibly enthusiastic about the course, but he can't coherently assemble his thoughts to get out a good lecture. It's so obvious that he knows so much and has so many great ideas, but he just rambles for most of the lecture. If he really organized one topic per lecture and created a coherent "story-line", it'd be sooo much better. … The materials were similar to his lectures - a non-focused stream of thoughts and examples. Smaller and more focused examples would have made a huge difference. Doing a github for the course was wonderful, but the materials inside could've been cleaned up a lot. … Most of the examples are so abstract and Dr. Menzies jumps from one thing to another so quickly it can be very easy to get lost. … I think the due dates should have been more rigid so we don't have assignments due on exam week. … the project assignment itself was also lacking in detail. This made it very difficult to provide the type of result that the professor was looking for.

CSC 510 (Spring 2018):
- It was a fun, intuitive class. Did not expect SE to be this fun. …. Good course structure, having two projects really enforce the practical aspect of theory explained in the course …The course has two projects which are intensive and call for the application of the concepts studied in the course. The first project is the one which we developed from scratch. And the second project is the one which is developed by some other team but is made feature-rich or modified positively by another. It's a great concept. This way students get an opportunity of learning how other people have implemented a certain thing and how they add on to it. … Strength: shares industrial experiences which is very helpful … It was fun attending his lectures. … The instructor was pretty enthusiastic and taught with a lot of energy. The lectures were interesting and exciting. … The professor explains a lot about the related things happening in the world… SE course is too broad. Prof Menzies tries his best to teach the class the way of industry. … Strengths - "Very knowledgeable" and he knows it. Weaknesses - Very knowledgeable and "he knows it".

CSC591-023 (2017):
- So much enthusiasm OMG!! That is what students need to see in a professor. If it would not have been for his enthusiasm we would not have done our project so well. It just feels good to be in his class. Perfect presentation skills! Glad I took the course…. One of the rare and best course at NC State for data science. Everyone must take it!!! Make it compulsory of Data Science track…. This course was amazing, I learned many things from the lectures and the core concept of the subject was very through and with so many hands on experiments we learned the subject very well. "This course had everything in perfect order, the core basics, experiment with real life examples, latest most advanced topics to oldest most reliable ones. With the lectures on different papers i learned what are different research topics that is being performed in the industry." 'This course was very through and well planned. The lectures were really enjoyable. And the homeworks were really good and we can learn a lot from them…. 'Very passionate about the material he teaches.'...'Prof. Menzies's classes are very interesting and engaging'

CSC510 (2017):
- Treats students with respect, very enthusiastic about teaching the course. … The instructor is so knowledgeable. He can extends the talk to a lot of things related. Haven’t seen any other professor so enthusiastic about the subject. Sometimes I feel hard to follow. … immense knowledge about the subject. He is very enthusiastic; creates a light hearted mood in the classroom and encourages student participation. … don’t know any other instructor, younger or older, who is as enthusiastic, optimistic and excited about their course. Helps to update oneself to how software is being designed, coded and tested in outside work. Needs, more concentration on coding/projects (including designing and testing/mocking) and how to tackle the problems (faced during software development cycle) - rather than theory. … At times, there is too much theory. … I thought the focus on
research didn't really make sense for this course. … but often he will go off on a tangent, pulling up dense (in terms of content and newness to students) research papers of his own and talk about them at great length.

- **Dec 2017,** I received the “Letter of Gratitude” show at right from one of my graduate subject’s attendees.
- **Prof. Warwick Arden** (Provost) mailed me on Mark 16 2016 saying that some students had used the “Thank a Professor” website to comment favorable on my teaching:
 - He writes “You efforts with these students area reflection of your dedication to teaching and learning. I congratulate you on this recognition and offer by sincere appreciate for your work with students at NCSU.
 - Student comments included “I compare you to an owl because you have a deep connection with wisdom and intuitive knowledge. You have been kind and patient with me and your students. Thank you for everything.“

- **CSC591-006 (2016):**
 - Great teaching! … Great prof! … Course taught well. The best lecturer I've had at NC State with Samitova as a close second…. Understood the material well enough to talk off the cuff which means it stayed interesting and well paced. Good interaction with students, always get quick and useful feedback…. Good training of data science and programming…. Knowledgeable and passionate in teaching…. The course laid a very good foundation of data science and how practice it as software scientists, the reading assignments (although not easy) taught me how to analyze a research paper… The course was excellent.

- **CSC591-007 (2016):**
 - Amazing course structure. Some of the concepts were used in my job interviews… What an enthusiastic professor. So funny and makes the class so interesting… Good homeworks and projects. Good materials…. He is amazing and has a lot of knowledge. He is passionate about what he teaches and that's why it makes the class interesting as well. Learnt a lot from him….. He is really passionate about the things he teaches and is a very congenial teacher… Very passionate about the subject which made me excited to learn ASE… It was an amazing course. What I studied in this course, I could not have learned otherwise. I have not seen another professor as enthusiastic as Dr. Menzies in teaching a class. Plus, he never lets you feel bored in class. Each and every concept I learned were new for me; which made this class different from other classes and challenging as well…. Very enthusiastic about the material and I loved having the whole course on Github. More instructors should do this. Workshops were also very beneficial more of those please… Professor is very passionate about the subject and is very keen to share what this field has to offer for computer scientists. … : Almost all the concepts learned in this course were new to me and I guess most other students. This is great knowledge that can be applied in any domain of computer science. Professor and TAs are very helpful with doubts. …

- **CSC510 (2016):**
 - Awesome professor. …Nice and kind… Brilliant core course. Fun to learn with Dr Menzies. Must take for anyone aiming to be a Software Engineer. … Good teaching skills, Enthusiastic about the course…. Brought a lot of energy to the class, and made the subject really interesting! Really liked the short language demos… Would recommend this course to anyone who asks! Wish I'd taken it last year, so I could have done some of the other course taught by Dr. Menzies…. I really loved this class because of the teaching style Dr Tim adopted, he teaches by giving these anecdotes and relating everything being taught with his real world experience. It's a joy to attend his classes and learn from him. Professor treated everyone with equality and
took great care in making his students aware of how gender bias impact the CS world today and should be broken. He sets an example and also shows mirror to the students who are consciously/unconsciously suffering from the gender bias issues. I really want to praise and thank him for doing that. … The instructor is enthusiastic and knowledgeable. He can explains course concepts clearly and give concrete examples in real life. After class, the instructor also happy to answer students' questions and give very useful feedback. … After taking a really mediocre SE course in my undergrad (not at state), I had high hopes for a graduate level SE course and this definitely did not disappoint! Great instructor that made you want to come to class, with an interesting lecturing style that made me want to engage with the material…. Dr Menzies puts everyone at ease in his classes with his sense of humor. Wonderful teacher with tremendous insight and knowledge. Kept a theoretical subject like SE always interesting with good anecdotes, examples and "What did we discuss in the last class?". Liked his discussion based style of teaching…. The course is well designed, the project gives a good look-in into SE practice.

- **CSC510 (2015):**
 - Enthusiastic, Very passionate … Dr. Menzies is a fantastic teacher. He loves research work and hard-working. … Excellent teacher with a flair for creating interests in students …. instructors shares his own experience which is valuable for students and gives pretty god idea who software industry works. … Assignments were good and helped in learning. … Tim is a very good professor, whose class is full of fun. He always told something new to us. … Awesome professor … Amazing professor. His enthusiasm for the subject could be felt. … Amazing professor. His enthusiasm for the subject could be felt.

- **Csc591/791 (2014):**
 - Dr. Menzies is overall an incredibly reasonable instructor that presents material in a way that students can understand it and his expectations can be met with adequate effort. Above all his expectations are well explained at the outset of the course and if you want to be successful in the class you can be successful. ….Professor Menzies was enthusiastic, humorous, and communicated well. He used helpful visualizations, often an upside-down table or contorted elbow, as an analogue for difficult concepts…. I think the instructor is quite enthusiastic and energetic. He makes the class very much interactive…. Very enthusiastic and very intelligent. Conveys the ideas well and uses "perfect" examples …. Using the right example can save a lot of time which can be used to do more. Course was really good. Content was nice and its very relevant too. Further professor had recommended a book to follow for those who had not done much in python. He recommended it much before the classes started. I finished the book before the classes started and it helped me to become very comfortable with python as the course started. … brilliant course … The Instructor was well prepared and very enthusiastic…. The Instructor was well prepared and very enthusiastic…. Class is *never* boring; even if I had a hard time following the lectures at times, I walked away with new thoughts each class session…. Dr. Menzies is blunt with feedback but it's never personal…. Definitely the most difficult subject I've taken so far. I learned a lot and would do it again if given the choice….. This is cutting edge stuff and is worth the trouble; it's a very different course from a lot of the current offerings, however, and I would highly recommend for any prospective or current PhD students interested in research.

Also, I have taught the following other courses (at previous universities):
- Agent-oriented programming (2009), Ph.D. graduate subject
- Open Source Software (2007), 4th year undergraduate subject
- Lightweight Software Engineering (2004), 4th year undergraduate subject
- Knowledge engineering (2002, 2003), 4th year undergraduate subject
- Software V&V (2003), Masters course year
- Modelling and analysis of software (2000), 4th year undergraduate subject
- Domain specific languages (2001), graduate class.
- OO software development (1997-98), 4th year undergraduate subject
- Visual programming (1996), 3rd year undergraduate subject
- Software engineering (1996), 3rd year undergraduate subject

B. INSTRUCTIONAL DEVELOPMENT
• New course Foundations of Software Science: At NC State in 2017 I created and taught the new subject. All lectures and projects were written by me.
• New course Automated Software Engineering: At NC State in 2015 I created and taught a new subject automated software engineering. All lectures and projects were written by me.
• New course Search-based Software Engineering: At NC State in 2014 I created and taught a new subject on search-based software engineering. An updated version of this will be taught in Fall 2015 as Automated (model-based) Software Engineering.
• New course Artificial Intelligence: At West Virginia University in 2008, 2010, 2012 I created then completely updated an undergraduate subject on artificial intelligence.
• Programming languages: At West Virginia University in 2009 and 2011 I updated the undergraduate programming language subject to include logic programming and functional programming.
• Data mining: At West Virginia University in 2002, I created and taught a graduate subject on this topic. This subject was extensively revised each year 2003 to 2013.
• Agent-oriented programming: At West Virginia University in 2009, I created and taught a graduate subject on this topic.
• Knowledge engineering: At West Virginia University in 2002, I created and taught a graduate subject on this topic.
• Domain specific languages: At the University of British Columbia in 2001, I created and taught a graduate subject on this topic.
• Visual programming languages: At Monash University in 1996, I created and taught a graduate subject on this topic.
• Research methods: At Monash University in 1995, I created a subject on graduate research methods.

C. MENTORING ACTIVITIES
• Working with my SE faculty colleagues, developed a successful NSF Research Experience for Undergraduates grant for “Science of Software”, 2016-2018.
• Mentor for
 • Associate professor Sarah Heckman (meet, two times)
 • Assistant professor Bradley Reaves (meet twice)

D. MASTERS AND DOCTORAL THESES DIRECTED
I am or was chair or co-chair of the advisory committee for the following research students by thesis (students who have graduated= 7 PhD + 279MS):

Student working towards a degree (9 PhD):

1. Amritanshu Agrawal (passed, oral prelim Jan 2019)
2. Jianfeng Chen (passed, oral prelim, Dec 2019)
3. Zhe Yu (passed, oral prelim, Dec 2018)
5. Tianpei (Patrick) Xia
6. Huy (Ken) Tu
7. Suvodeep Majumder
8. Joymallya Chakraborty
9. Rui Shu
10. Fahmid Fahid
11. Shrikanth Chandrasekaran
12. Xueqi (Sherry) Yang

 Completed Ph.D.:

5. Fayola Peters Ph.D. (2014, WVU) Privacy and Data Sharing
8. David Owen Ph.D. (2010, WVU) *Combining complementary formal verification strategies to improve performance and accuracy*

Completed Masters:

1. Sushma Ravichandran, MS, NC State
2. George Mathew, MS, NC State
3. Rahul Krishna, MS, NC State
4. Divya Ganesan MS (2015, WVU) *Exploring Essential Content of Defect Prediction and Effort Estimation through Data Reduction*
6. Vasil Papakroni MS (2013, WVU) *Data Carving: Identifying and Removing Irrelevancies*
7. Joseph Craig MS (2013, WVU) *Accelerating MOEA Non-dominated Sorting by Preserving Archival Relationships*
8. William Burney MS (2012, WVU) *Understanding Search-Based Software Engineering*
10. Brian Lemon MS (2010, WVU) *The effect of locality based learning on software defect prediction*
11. Andrew Matheny MS (2010, WVU) *Trade-offs of heuristic vs. rigorous algorithms in text mining*
12. Joe D’ Alessandro MS (2010, WVU) *Optimized trusted information sharing*
13. Grey Gay MS (2010, WVU) *The robust optimization of non-linear requirements models*
15. Ous El-waras MS (2008, WVU) *Software process control without calibration*
19. Justin DiStefano MS (2008, WVU) *Building better software: the applicability of a professional tool for automa*
20. Daniel Baker MS (2007, WVU) *Hybrid approach to expert and model based effort estimation*
21. Donald Boland MS (2007, WVU) *Data discretization simplified: randomized binary search trees for data preprcossing*
23. Ryan Clark MS (2005, Portland State) *Optimizing Treatment Learning*
25. Yi Hu MS (2003, University British Columbia) *Treatment learning*
27. David Owen MS (2002, WVU) *Combining complementary formal verification strategies to improve performance and accuracy*
28. John Powell MS (2001, WVU) *Graph theoretic approach to assessing tradeoffs on memory usage for model checking*
III. SCHOLARSHIP IN THE REALMS OF FACULTY RESPONSIBILITY

A. SCHOLARLY ACCOMPLISHMENTS – PUBLICATIONS

Submitted (under review)

3* EMSE journal
1* ICPC conference
3* TSE journal
1* IST Journal

Invited and Contributed Research Presentations

1. Invited keynote, Foundations of SE, Florida, 2018
2. Invited keynote, ICSE RAISE workshop, Realizing AI+SE synergies, May 2018
3. Invited Keynote, Inaugural MSR award, MSR’17
4. Invited Keynote, Data-Driven Search-Based SE, Japan, December 2017.
9. Invited Talk, CodeFreeze19, Minnisota, 2019
10. Invited Talk, Naval Research Lab, May 2018
11. Invited Talk, Lexis Nexis Cognitive Summit, August 2018
12. Invited Talk, Monash University Dean’s series, Australia, July 2017
13. Invited Talk, IBM Technical Interchange Conferences, November 2017
16. Invited speaker, Lexis Nexis industry day, August 2016 http://tiny.cc/timm9

17. Journal-First presentation, FSE’17 Are Delayed Issues Harder to Resolve?
18. Journal-First presentation, FSE’15 Geometric Active Learning

19. Tutorial, ICSE’16: How Not to do it: Anti-patterns in data science

Refereed Journal and Top Magazine Publications

1. Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, Sven Apel, Finding Faster Configurations using FLASH, accepted IEEE Transactions on SE, 2018
3. M Choetkierthikul, HK Dam, T Tran, TTM Pham, A Ghose, T Menzies , A deep learning model for estimating story points. IEEE Transactions on Software Engineering
7. J Nam, W Fu, S Kim, T Menzies, L Tan, Heterogeneous defect prediction, IEEE Transactions on Software Engineering, June 2017

Books/Book Chapters
2. Perspectives on Data Science for Software Engineering, T. Menzies, L. Williams, T. Zimmermann, Morgan Kaufmann, 2016

Refereed Conference Publications

1. Amritanshu Agrawal, Tim Menzies: Is "better data" better than "better data miners"?: on the benefits of tuning SMOTE for defect prediction. ICSE 2018: 1050-1061

3. Amritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran, Tim Menzies: We don’t need another hero?: the impact of "heroes" on software development. ICSE (SEIP) 2018: 245-253

5. Suvodeep Majumder, Nikhila Balaji, Katie Brey, Wei Fu, Tim Menzies: 500+ times faster than deep learning: a case study exploring faster methods for text miningstackoverflow. MSR 2018: 554-563

10. Wei Fu, Tim Menzies: Revisiting unsupervised learning for defect prediction. ESEC/SIGSOFT FSE 2017: 72-83

11. Vivek Nair, Tim Menzies, Norbert Siegmund, Sven Apel: Using bad learners to find good configurations. ESEC/SIGSOFT FSE 2017: 257-267

18. Lucas Layman, Allen Nikora, Joshua Meek, Tim Menzies, Topic Modeling NASA Space Problem Reports (research in Practice Track). MSR’16 (27% acceptance rate for full papers)

20. Scalable product line configuration: A straw to break the camel's back, ASE 2013, AS Sayyad, J Ingram, T Menzies, H Ammar

22. Class level fault prediction using software clustering, G Scanniello, C Gravino, A Marcus, T Menzies, ASE 2013

24. Tim Menzies: Beyond data mining; towards "idea engineering". PROMISE 2013: 11
Learning from open-source projects: An empirical study on defect prediction, Z He, F Peters, T Menzies, Y Yang, ESEM 2013
26. Beyond data mining; towards idea engineering T Menzies, PROMISE 2013
29. Yang Sok Kim, Byeong Ho Kang, Seung Hwan Ryu, Paul Compton, Soyeon Caren Han, Tim Menzies: Crowd-Sourced Knowledge Bases. PKAW 2012: 258-271
30. Raymond Borges, Tim Menzies: Learning to change projects. PROMISE 2012: 11-18
43. K. Gundy-Burlet and J. Schumann and T. Menzies and T. Barrett, "Parametric Analysis of a Hover Test Vehicle Using Advanced Test Generation and Data Analysis" by AIAA Aerospace, 2009,

111. Parametric analysis of a hover test vehicle using advanced test generation and data analysis.

High Impact, Non-Refereed Publications

Other Publications (workshops, etc)

54. T.J. Menzies and P. Compton. The (extensive) implications of evaluation on the development of knowledge-based systems.
65. T. J. Menzies. Concerning the user of procedural construct as a knowledge acquisition technique. In IJCAI '91 Knowledge Acquisition Workshop, 1991.

B. RESEARCH FUNDING

New for this year: $308,628

Accepted:
- LAS: How Safe is this conclusion?: $35,000
- Lexis Nexis: Entity Recognition: $40,000
- Lexis Nexis: configure + cloud tests $110,000
- SHF: EAGER: Empirical SE for Computational Science: $124,628

Under review:

Declined:
- SHF: Small: Jumpstarting Next Generation Vulnerability Prediction Models, $499,857
- SHF: Medium: Better Software Analytics by Combining Human and Artificial Intelligence $905,037
<table>
<thead>
<tr>
<th>start</th>
<th>finish</th>
<th>Pending body</th>
<th>Name</th>
<th>Years</th>
<th>gift</th>
<th>A</th>
<th>B</th>
<th>C + D</th>
<th>E</th>
<th>F</th>
<th>grant: sole PI (or expanded by FAM)</th>
<th>Research Co-PI (or DFM)</th>
<th>Research Co-PI (total)</th>
<th>Budget: total</th>
<th>sum for may 2007-april 2008</th>
<th>sum for may 2007-april 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>2018</td>
<td>LAS (NASA)</td>
<td>How to make a magician</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$10,000</td>
<td></td>
<td>$55,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2017</td>
<td>NSF</td>
<td>Anstaging</td>
<td>$0</td>
<td>$450,000</td>
<td>$50,000</td>
<td>$500,000</td>
<td>$100,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2017</td>
<td>IBM</td>
<td>Automated SI/Faculty grant</td>
<td>$40,000</td>
<td></td>
<td></td>
<td></td>
<td>$40,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2016</td>
<td>LAS (Raleigh)</td>
<td>Validation lab</td>
<td>$120,000</td>
<td></td>
<td></td>
<td></td>
<td>$120,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2017</td>
<td>LAS (Atlanta)</td>
<td>Understanding policies</td>
<td>$55,000</td>
<td></td>
<td></td>
<td></td>
<td>$55,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2017</td>
<td>LAS (Atlanta)</td>
<td>The agreement mechanism</td>
<td>$55,000</td>
<td></td>
<td></td>
<td></td>
<td>$55,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2017</td>
<td>LAS (NASA)</td>
<td>Inventioned data sharing</td>
<td>$55,000</td>
<td></td>
<td></td>
<td></td>
<td>$55,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2016</td>
<td>IBM</td>
<td>Automated SS/Faculty grant</td>
<td>$60,000</td>
<td>$10,000</td>
<td></td>
<td></td>
<td>$60,000</td>
<td>$10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2016</td>
<td>IBM</td>
<td>Bi-Science of Software</td>
<td>$50,000</td>
<td>$100,000</td>
<td>$20,000</td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2016</td>
<td>IBM</td>
<td>Validation lab</td>
<td>$120,000</td>
<td>$100,000</td>
<td></td>
<td></td>
<td>$120,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2016</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2016</td>
<td>IBM</td>
<td>Optimization business process</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>IBM Core license</td>
<td>$30,000</td>
<td>$100,000</td>
<td></td>
<td></td>
<td>$30,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2015</td>
<td>IBM</td>
<td>Optimization of ML for Big Data</td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td>$50,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Here is the NSCU Radar Report. Note that it does not include
 - My gift amounts
 - or the $624K in NSF proposals that are currently under review

NORTH CAROLINA STATE UNIVERSITY

Proposals Submitted for the Period January 01, 2017 to February 02, 2018 by College and Department

Investigator is Menzies, Timothy; college is COLLEGE OF ENGINEERING (PI college only); department is Computer Science (PI department only); revised proposals suppressed; pre-proposals suppressed; internal projects suppressed

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Investigator(s)</th>
<th>SP Department</th>
<th>Direct Sponsor</th>
<th>Amount</th>
<th>Type</th>
<th>Category</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-0729</td>
<td>Menzies, Timothy</td>
<td>Computer Science</td>
<td>National Science Foundation (NSF)</td>
<td>$905,037</td>
<td>New</td>
<td>Research</td>
<td>SHP: Medium: Better Software Analytics by Combining Human and Artificial Intelligence</td>
</tr>
<tr>
<td>2018-1293</td>
<td>Menzies, Timothy, Williams, Laurie</td>
<td>Computer Science</td>
<td>National Science Foundation (NSF)</td>
<td>$499,857</td>
<td>New</td>
<td>Research</td>
<td>SHP: Small: Jumpstarting Next Generation Vulnerability Prediction Models</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Science (141901):</th>
<th>$1,404,894</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLLEGE OF ENGINEERING Total:</td>
<td>$1,404,894</td>
<td>2</td>
</tr>
</tbody>
</table>

Grand Total: $1,404,894 2 projects

[Return to Report Menu]
C. CENTERS AND MULTIDISCIPLINARY COLLABORATION

N/A

IV. EXTENSION AND ENGAGEMENT WITH CONSTITUENCIES OUTSIDE THE UNIVERSITY

- **Lexis Nexis: cloud configuration, Raleigh campus**
- **Lexis Nexis: test case prioritization, Raleigh campus**
- IBM, data mining work with research triangle. Faculty award 2017.
- IBM, data mining work with research triangle. Faculty award 2016.
- Lexis Nexis, text mining work, 2015, 2016, 2017
- Jet Propulsion Lab, effort estimation research. 2002 to present. Funded research 2007, 20014 to 2015
- Microsoft Research, research projects, February 2011 to 2012 to present
- NASA, Software Engineering Research Chair, 2001 to 2003
- NASA Effort Estimation research, 2004 to 2015
- Consultant, Object-oriented programming, 1988-1995

V. TECHNOLOGICAL AND MANAGERIAL INNOVATION

A. TECHNOLOGY TRANSFER

Workshop Organizer/Facilitator:
- RAISE pc-chair 2019
- ROSE festival organizer (DSE’18, ICSE’19)
- FSE’18 artifacts chair
- SSBSE co-PC chair, 2017
- FSE SWAN workshop, co-chair, 2017
- Artifacts track, FSE’16
- Artifacts track, ICMSE, 16
- Big Data for SE, ICSE’16 workshop
- Actionable Analytics, ASE’15 workshop
- Big Data for SE, ICSE’15 workshop
- RAISE’14 (Realizing AI Synergies with Software Engineering), an ICSE 2014 workshop/
- Dagstuhl Seminar, Software Development Analytics, 2014 (co-organized with Laurie Williams and Tom Zimmermann).

Tutorial Presenter/Organizer:
- ICSE 2016 Technical Briefing: How not to do it, Anti-Patterns in Data Analysis.
- ICSE 2014 Tutorial: Art and Science of Analyzing Software data
- ICSE 2013 Tutorial: Data Science for Software Engineering
- June 2010: Data Mining summer school, Queens University, Kingston, Canada (http://goo.gl/oMcSX);
- Feb 2010: Invited speaker, Microsoft, Empirical SE, version 2.0
- Sept 2008: Invited Speaker, Google, Defect Prediction
B. IMPACT
For my full career impact, see section B2

B1. IMPACT, last 12 months
1. What are the highlights of your achievements in the past year?
 2. One of my 2007 papers have now past 1000 citations
 At the time of this writing, at IEEE transactions on SE, three of the top twenty most
cited papers are by me and my Students (Google Scholar, Sofware Systems).
 The “Bellwether” research is not getting cited in multiple papers from other
researchers
 Elevated to IEEE Fellow, which is personally gratifying but also has some useful
benefits to the university for reputational purposes
 As part of the IEEE fellow evaluation process, got to revisit some old work. I found
that much of old NASA research continued even after I left:
 • In 2005, my students commercialized his defect detection methods in the
Predictive tool suite, subsequently purchased by companies such as
Chevron, Northrop Grumman, LogLogic, Inc., and Compagnie Financière
Alcatel, to find code defects.
 • In 2017, the US Software Engineering Institute used my optimizers to guide
discussions about costly updates to Department of Defense software.
 • NASA used my algorithms
 • in 2008 to find violations in Space Shuttle launch requirements;
 • in 2010, to quickly explore the design of next-generation new Air
Traffic Management concepts;
 • in 2017 to find better monitoring strategies for pilots flying planes in
safety-critical situations.
 • In 2016, based on Dr. Menzies’ research, NASA’s Jet Propulsion
Laboratory created the NASA Analogy Software Cost Model as its
official tool for predicting software development costs.

2. In the last year, how have you had impact? Who have you impacted?
 • Working with Lexis Nexis,
 • Reorganized the data collection for their cloud testing environments such that they were better suited
to assessing test effectiveness.

3. In the last year, what have you done to help the department:
 • Recruit and retain faculty of the highest caliber.
 • Engage with other faculty outside of normal work activities.
 • Served as a committee member for a English student’s Ph.d. (Peter Kudenov).
 • Search committees
 • Served on hiring committees
Meet with numerous candidates as part of their on–site interviews
 - I serve as mentor for
 - Associate professor Bradley Reeves
 - Associate professor Sarah
 - Working with other senior colleagues on grants
 - I co-wrote an NSF small grant with full professor Laurie Williams

What have you done to promote your press coverage?
 - Very active on social media
 - Researchgate.com reports that I was the most cited author in the CSC department for much of 2018.

Recruit and retain high-quality PhD students.

- Worked with the SE faculty to select and target and contact exceptional Ph.D. candidates
 - Worked with the CSC grad office for the recruiting weekend. I devoted 2 days to that project-organized presentations for the students interested in SE; spent some one-on-one time with various candidates, attended the evening banquet, advised the CSC grad office about which candidate might be worthy of additional financial support.
 - As to retaining grad students, I’ve created and maintained extensive relationships with Lexis Nexis and ABB in order to offer students interesting big data projects.
 - I also supervise a large number of Ph.D. students (nine)
- Increase multi-disciplinary research collaborations, including sustainable centers of excellence.
 - I am now on the committee for an English digital Humanities Ph.D. candidate (Peter Kudenov)
- Encourage active collaboration with business, government, and other universities
 - I am a consultant to IBM research triangle regarding their analytics program.
- Expand collaboration and outreach to K-12 students and teachers
 - I worked last summer on the SE NSF REU project. Supervised 3 students. Gave some guest lectures.
- Offer outstanding and current curricula at the undergraduate and graduate levels
 - I developed a new subject “Foundations of Software Science” http://git.io/fss18

Creation or used a repository of course material available to other faculty

- All my course material is on-line, available for download via Github
 - E.g. Teaching materials for Model-based Automated Software Engineering http://github.com/txt/ase16
 - E.g. Teaching materials for Foundations of Software Science: http://git.io/fss18
 - e.g. Complete notes/ project definitions for Graduate SE: https://github.com/txt/se16
- Incorporated into classes of team projects, written reports, in-class presentations
 - All my CSC 510 students report back to the class in marathon 3 week-long presentation at end of semester.

4. In the last year, what could the department do to make you more productive? (Be specific)

- Cover my cloud compute costs (not HPC, but ARC)
- Better ways to select better Ph.D. students
- More support go Grad student travel

5. What are your goals for the 2017-20199 year?

- More publications for my graduate students
- More long term funding for my graduate students
B2. IMPACT, full career

Optimization of Software-Intensive Systems: I have developed (and demonstrated the value of) very fast non-numeric optimizers for software-intensive systems. For the purposes of controlling spacecraft re-entry guidance software, my learners generated better controllers and ran 40 times faster than the state-of-the-art numeric optimizers.

- For the purposes of extracting products from product lines, for 2013, 2014, my algorithms represented the state of the art on that field (most number of goals, largest models).

- In 2017, the US Software Engineering Institute used my optimizers to guide discussions about costly updates to Department of Defense software.

- NASA has used my algorithms
 - in 2008 to find violations in Space Shuttle launch requirements;
 - in 2010, to quickly explore the design of next-generation new Air Traffic Management concepts;
 - in 2017 to find better monitoring strategies for pilots flying planes in safety-critical situations.

Software Defect Prediction: I have been instrumental in the development of experimental methods that allow for the discovery and precise evaluation of software defect predictors generated by data miners from static code attributes. According to Martin Shepperd my IEEE TSE 2007 paper on learning defect predictors “represents the state of the art for this kind of research” and “is widely cited”.

- This work is the most cited paper 2005 to 2014 in IEEE Transactions in Software Engineering (source: http://academic.research.microsoft.com).

- This work is now listed as being amongst of the 16th most most-cited SE papers of all time.

- In 2005, my students commercialized his defect detection methods in the Predictive tool suite, subsequently purchased by companies such as Chevron, Northrop Grumman, LogLogic, Inc., and Compagnie Financière Alcatel, to find code defects.

- In 2009, researchers in Turkey demonstrated the effectiveness of my methods in a commercial setting. This is one of the first and the most prominent demonstrations of the value of these methods.

Cross-company Learning: I was one of the first to demonstrate that effective local effort/defect models can be learned from data imported from other companies. I have shown that useful models can be built if relevance filtering selects the subset of the data from other companies that is most relevant to the local company.

- This work is the third-most cited paper in the Empirical Software Engineering Journal 2009 to 2014 (source: Google Scholar).

Software Effort Estimation: I remain one the most prominent publishing researches in this field. Elsewhere, I have addressed, and reduced, one of the major outstanding problems in the field of effort estimation; i.e conclusion instability. Using Ensemble learning, I have found that if we study enough data sets and enough learners then the magnitude of that instability is less than the total sample.

- Another 2012 paper of mine on analogy and effort estimation as the most-cited estimation paper in the last five years (source: Google Scholar metrics)

5 Scalable product line configuration: A straw to break the camel's back, ASE, 2013 , AS Sayyad, J Ingram, T Menzies, H Ammar

7 http://menzies.us/pdf/mostCitedSEpapers.pdf

• In 2016, based on my research, NASA's Jet Propulsion Laboratory created the NASA Analogy Software Cost Model as its official tool for predicting software development costs.

Software Requirements Engineering: I was one of the earliest pioneers in the field of search-based software engineering for requirements engineering. According to Mark Harman, in 2002 I was one of the earliest to apply Pareto optimality in search-based software engineering (SBSE) for requirements engineering.

Measurement Errors: I have discovered a previously undocumented subtle, and dangerous, aspect of a widely-used performance measure. Precision is a commonly-used assessment measure used in data mining. In 2007, I showed that this seemingly simple measure had significant problems when the target class is relatively rare (specifically, for such data sets, seemingly minor changes in the learning process can lead to massive changes in the precision values).

The PROMISE Project: I have been very active in solving an outstanding problem in software engineering: accessing the data required for repeatable experiments. In order to support the above research, I had to create a source of SE data. Accordingly, in 2005, I founded the PROMISE conference on repeatable experiments in software engineering. The goal of PROMISE is to give the research community free access to the data sets that we can use for analysis of software engineering data.

That work recently won me the inaugural Mining Software Repositories Foundational Contribution Award. See http://2017.msrconf.org/#/award.

The following notes come from that award. In this era of Github, GHtorrent, et al. it is hard to recall that only a decade ago, it was difficult to access project data. Nevertheless, that was the case. Back in 2005 many people in the MSR field were analyzing large amount of (public) open source data but kept the tools and processed datasets to themselves as it was often considered a competitive advantage. In fact, within the MSR community, it was not until 2013 that they started their Data Showcase track to encourage sharing of data. Meanwhile, back in 2005, I started the PROMISE workshop to encourage data sharing.

The following notes come from reviewers who endorsed by nomination for this award:

• "I don't think any other contribution that is even remotely comparable to (PROMISE)."
• "There are many factors that lead to the state-of-the-art in mining software repositories, ... sharing and replicability in the science of software engineering, but in my opinion, none played a greater role than the PROMISE repository, created by Tim Menzies."

Effort Estimation Data,” Software Engineering, IEEE Transactions on,

• "I can’t think of a stronger contribution right now (to MSR), except maybe the creation of the MSR community by Dr. Hassan."

• "PROMISE makes research results reproducible. For example, according to Robles et al. at MSR 2010, they found that over 95% of 171 papers published at MSR were unreproducible, since their associated data was no longer online. However, nearly all of the papers at the PROMISE conference was reproducible since they were based on PROMISE data. I believe this is a really significant contribution."

• "Prof. Menzies has enabled and inspired a generation of SE data scientists to use data to make refutable results. In his own publications, he makes extensive use of PROMISE data with the express aim of challenging others to share their data and/or repeat/improve/ or refute his own results. For example, his 2007 TSE article "Data Mining Static Code Attributes to Learn Defect Predictors" contains numerous interesting research contributions. But much of the paper reads like a "how to" guide on software analytics. All its data was placed online at PROMISE. This paper is widely cited, to say the least: 770 citations since 2007; most cites per year for any TSE paper since its publication; one the top 100 most cited papers anywhere in the history of SE (see http://dl.acm.org/citation.cfm?id=2874005). That paper ends with following paragraph:

 Our hope is that numerous researchers repeat our experiments and discover learning methods that are superior to the one proposed here. Paradoxically, this paper will be a success if it is quickly superseded.

I find this paragraph inspirational, a shining example of how to do open science in the Internet age. Here Dr. Menzies is pleading with the international research community to outperform his own publication. Further, by placing all the materials for this paper online at PROMISE, he is enabling other researchers to refute his work, if they can."

VI. SERVICE TO THE UNIVERSITY AND PROFESSIONAL SOCIETIES

A. UNIVERSITY SERVICE

 • Cahir, Search committee, SE faculty, 2019
 • Member, CSC Graduate Program Oversight Committee, 2016
 • Member, Strategic Planning Committee, 2016
 • Member, search committees, CSC, 2016
 • Worked on the graduate recruiting weekend, March 2017.
 • Member, University faculty scholars review committee (Sept 8, 2017).
 • Volunteer, Open Day, March 2015
 • Speaker, Graduate research seminar series (CS), November ‘14

B. NATIONAL AND INTERNATIONAL SERVICE

 • Editorial Board
 - IE Software journal
 - Journal of Software Systems, 2016-
 - Big Data Research, 2016 -present
 - Software Quality Journal, 2016-present
 - Information Software Technology, 2016-present
 - Empirical Software Engineering International Journal, 2009-present
 - Automated Software Engineering journal (2010 – present)
 - Transactions Software Methodologies
 • Associate Editor
 • General Chair
 - IEEE International Conference Software Maintenance and Evolution, 2016
 • Program Chair/Co-Chair:
 - RAISE 2019 PC-chair
 - PROMISE 2020 PC-chair
 - ROSE organizer ICSE’19 FSE’18
 - Symposium Search-Based Software Engineering, 2017
 - IEEE Automated Software engineering, 2012, Essen, Germany
 - PROMISE conference on repeatable experiments in software engineering (2005-2010)
 • Steering Committee Member
IEEE Automated Software engineering, 2012-
PROMISE conference on repeatable experiments in software engineering (2006-2012)

- Doctoral Symposium
 - Chair, IEEE Automated Software engineering, 2011, Lawrence, Kansas

- Research Proposal Panel

- Guest Editor:
 - (2017) IEEE Software, special issue on Actionable Analytics
 - (2016) Automated Software Journal, Best papers RAISE’15
 - (2015) Special issue, best papers from RAISE’13, Automated Software Engineering
 - (2013) Special Issues, Information and Software Technology, Best papers from PROMISE’11, 55(8),
 - (2013): Special Issue, Empirical Software Engineering, Best papers, PROMISE’10, 18(3) 2013

- General chair
 - ICSME’16
 - BigDSE’16, BigBDSE’15

- Senior roles in conference organization:
 - Artifacts chair, FSE’18
 - Data challenge, RE’18
 - PC-chair: SSBSE 2017,
 - Co-PC chair FSE SWAN 2017
 - Artifacts chair; FSE 2016
 - Artifacts chair: ICSME 2016

- Program Committee:
 - 2019:
 - IEEE Fellow award committee (for 2020).
 - ICSE,18, Msr award committees 2019,
 - 2018:
 - ICSE,18, Msr award committees 2018, SSBSE’18, ESEM 2018
 - 2017:
 - SoftwareMining’17, ICSE’17 (artifacts), PROMISE’18, MSR’18, ESEM’18, SPLC’17, EASE’17
 - 2016:
 - 2015:
 - Ase’15, BigDSE’15, Ease’15, EsPreSSE’15, Esem’15, Fse’15, Gecco’15, Icpc’15, Issre’15, Msr’15, NasBase’15, Promise’15, Raise’15, Ssbase’15
 - 2014:
 - MSR’14, ICSE14-demos, ICSE14-mainConference, DAPSE’14, EASE’14, GTSE’14, SAM 2014, SEAA 2014,
 - Before 2014:
- SAM2103,
- DAPSE’13
- ICSE’13: demos
- ASE-Tools’13
- ISSRE’13
- GTSE’13
- MALIR’13
- Software Mining -2012, 2013
- RAISE’12, RAISE’13
- FSE New ideas’11,
- Software engineering week, 2011,
- Spark’11
- IEEE International Symposium on Software Reliability Engineering (2010, 2009);
- Pacific Knowledge Acquisition Workshop, 2009, 2008
- LSO (learning software organizations), 2008
- Traceability in Emerging forms of SE , 2007
- International Workshop on Living with Uncertainty (2007)
- IEEE conference on high assurance software engineering (2007, 2004);
- 17th International Conference on Automated Planning & Scheduling (2007)
- MoChArt ’05 (model checking and AI)
- Tim Menzies, vita page 7 of 23
- IEEE Metrics 2003;
- Numerous other PCs since 1991 including
 - 8 international conferences
 - 16 international workshops,
 - 5 Australian national workshops.
 - Organizing committee member for 2 international workshops, 4 national conferences and workshops.

- Reviewer for: