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Abstract

Situated cognition (SC) claims that knowledge is mostly context-dependent and that symbolic de-
scriptions elicited prior to direct experience are less important than functional units developed via direct
experience with the current problem. If this were true, then we would need to modify the knowledge
modeling approaches of KA which assume that re-using old symbolic descriptions are a productivity tool
for new applications. There are numerous tools which, if added to conventional knowledge modeling,
could be said to handle SC (e.g. machine learning, abduction, verification & validation tools, repertory
grids, certain frameworks for decision support systems, expert critiquing systems, and ripple-down-rules).
However, we require an experiment to assess the effectiveness of these tools as a response to SC.

1 Introduction

”What is wanted is not the will to believe, but the will to find out,
which is the exact opposite.” — Bertrand Russell

” Measure what is measurable, and make measurable
what is not so.” — Galileo

Proponents of situated cognition (SC) in the AT field (e.g. [Suchman, 1987, Suchman, 1993, Clancey,
1987, Clancey, 1991, Clancey, 1993, Agre, 1990, Agre, 1993, Winograd & Flores, 1987, Compton & Jansen,
1990, Birnbaum, 1991, McDermott, 1987]) assert that symbolic descriptions elicited prior to direct experience
are less important than functional units developed via direct experience with the current problem (§3). More
precisely, they argue that:

Claim 1 The SC Premise: Human cognition cannot be accurately modeled by contert-independent asser-

tions (§3.1) because. . .

Claim 2 Weak SC.... The inferences of a symbolic model interacting with its environment are heavily con-
strained/ controlled/ changed, by the inputs from that environment. That is, using knowledge in a particular
context will significantly change that knowledge (§3.2). Given this, then. ..

Claim 3 Strong SC.:... Since the influence of the environment is so great, we should use pure reactive sys-
tems that interact directly with the environment without first reflecting over some symbolic description (§3.3).

SC is hence a challenge to knowledge acquisition strategies that rely of the reuse of old symbolic descrip-
tions (e.g. problem solving methods (PSMs) or ontologies) when building new applications (§2). There are
numerous potential responses to the challenge of the SC including ignoring it (§4.1), verification & validation
tools (§4.2), repertory grids (§4.3), expert critiquing systems (§4.4), machine learning (§4.5), certain frame-
works for decision support systems (§4.6), and ripple-down-rules (§4.7)). However, we cannot assess the effect-
iveness of these potential responses since the few “experiments” in the KA field are poorly controlled (§3.4).
A new experiment is therefore proposed which can assess the utility of these various responses (§5.2).

*Proceedings of the AAAT sponsored Banff Knowledge Acquisition Workshop, November, 1996. Available from http://
www.cse.unsw.edu.au/ ~timm/pub/ docs/papersonly.html



2 Brief Notes on Knowledge Modeling

This section is a brief review of knowledge modeling. For more information, see the Related Work section
of [Wielinga et al., 1992] and [Menzies, 1995b]. See also the ontology literature (e.g. [Gruber, 1993]) which
assumes that declarative descriptions of portions of old expert systems are useful for building new applications.

In Newell’s K. approach, intelligence is modeled as a search for appropriate operators that convert some
current state to a goal state. Domain-specific knowledge as used to select the operators according to the
principle of rationality; i.e. an intelligent agent will select an operator which its knowledge tells it will lead
the achievement of some of its goals. When implemented, this KL is built on top of a symbol-level containing
data structures, algorithms, etc. However, to a KL agent, these sub-cognitive symbol-level constructs are the
tools used “sub-consciously” as it performs its KI. processing [Newell, 1982].

Newell’s subsequent exploration of the KL lead to a general rule-based language called SOAR, [Rosen-
bloom et al., 1993] which was the basis for the problem-space computational model (PSCM) [Yost & Newell,
1989]. Programming SOAR using the PSCM involves the consideration of multiple, nested problem spaces.
Whenever a “don’t know what to do” state is reached, a new problem space is forked to solve that prob-
lem. Newell concluded that the PSCM was the bridge between SOAR and true KL modeling [Newell et al.,
1991, Newell, 1993].

There is a difference between PSCM (hereafter, KL4 ) and KLp , a KL-modeling variant which groups
together a set of authors who argue for basically the same technique; i.e. Clancey’s model construction
operators [Clancey, 1992], Steels’ components of expertise [Steels, 1990], Chandrasekaran’s task analysis,
SPARK/ BURN/ FIREFIGHTER (SBF) [Marques et al., 1992] and KADS [Wielinga et al., 1992]. The
fundamental premise of KLp is that a knowledge base should be divided into domain-specific facts and
domain-independent PSMs.

In terms of this paper, the key difference between KL4 and KLp is how much architecture they impose
on a solution: KXLp imposes more than KL4 . PSMs are only implicit in K£4 . The observation that a
PSCM system is performing (e.g.) classification is a user-interpretation of a lower-level inference (operator
selection over a problem space traversal) [Yost & Newell, 1989]. In KLp , PSMs specify the data structures
required for each method. In KLp , once a PSM is initially specified, it is assumed to be set in stone for the
life of the project.

It will be argue below that an SC-aware KA tool must minimise the its architectural assumptions. Further,
whatever is built within those architectural assumptions must be customisable. One basis issue with KLp is
that extensive customisation is not supported, particularly of the PSM. Our preferred response to SC includes
a PSM customisation tool (§5.1).

3 Situated Cognition
3.1 About the SC Premise

Dreyfus argues that the context-dependent nature of human knowledge makes it fundamentally impossible to
reproduce in symbolic descriptions [Dreyfus, 1979]. Searle takes a similar stand, claiming that the only device
that can replicate human intelligence is another human [Searle, 1980, Searle, 1982, Searle, 1995] since only
humans can share the same context. Birnbaum stresses “the role of a concrete case in reasoning” [Birnbaum,
1991, p58] and how logical AI cannot correctly handle such specifics, particularly when we have a specific
conflicting belief.

Relativity, Heisenburg’s uncertainty principle, the indeterminacy of quantum mechanics and Godel’s the-
orem demonstrate hard limits to the complete expression of truth. Many twentieth century thinkers have
therefore adopted a relativist knowledge position. Kuhn notes that data is not interpreted neutrally, but (in
the usual case) processed in terms of some dominant intellectual paradigm [Kuhn, 1962]. Popper [Popper,
1963] argues that, ultimately, we cannot prove the “truth” of anything since “proofs” must terminate on
premises. If we request proofs of premises; then we potentially recurse forever. Hence, on purely pragmatic
grounds, people are forced into an acceptance of certain premises. Note that the chosen premises may radic-
ally influence the conclusions reached. Agnew, Ford & Hayes offer their summary of contemporary thinking
in the history, philosophy and sociology of science as:

Expert-knowledge is comprised of context-dependent, personally constructed, highly functional



but fallible abstractions [Agnew et al., 1993].

Easterbrook [Easterbrook, 1991] argues that it is undesirable to demand that knowledge bases are con-
sistent.

This insistence that expertise must be consistent and rational imposes restrictions of the knowledge
acquired. The knowledge acquisition process becomes not so much the modeling of the expert’s
behaviour, but the synthesis of a domain model which need not resemble any mental model used
by the expert [Easterbrook, 1991, p264].

The experience with expert systems is that the process of building consensus between individuals or
creating an explicit record of it in a knowledge base introduces biases/errors. Silverman cautions that
systematic biases in expert preferences may result in incorrect/incomplete knowledge bases (§4.4). Preece
& Shinghal [Preece & Shinghal, 1992] document five fielded expert systems that contain numerous logical
anomalies (see Figure 1). These expert systems still work, apparently because in the context of their day-to-
day use, the anomalous logic is never exercised.

MMU | TAPES | NEURON | DISPLAN | DMS1
Size (literals) 105 150 190 350 540
Logical subsumption 0 5 0 4 5
errors
Missing rule errors 0 16 0 17 0
Circularities in reason- 0 0 0 20 0
ing errors

Figure 1: Samples of Errors in Fielded Expert Systems. From [Preece & Shinghal, 1992].

Shaw reports an experiment where a group of geological experts built models for the same domain, then
reviewed each other’s KBs as well as their own twelve weeks later [Shaw, 1988]. Note the two context changes:
from expert to expert and also a change of twelve weeks. For the twelve week self-review study, it was found
that an expert’s understandability and agreement with their own knowledge was less than total (see Figure
2.A). For example, expert Fq only understands three-fifths of her own thinking three months ago. For the
cross-expert review, it was found that experts disagree significantly with each other (see Figure 2.B). In this
cross-review study, it was found that levels of understanding may be low (e.g. expert F; only understands
expert Ejy’s knowledge base 31.2% of the time). Levels of agreement were found to be even lower. For
example, expert F; only agreed with expert E5’s knowledge base 8.3% of the time.

B. Cross-expert review

A. 12 weeks later, self-review EX.PGI“t % %
Expert | % 7 pairs understands | agrees
Ei, B, | 625 33.3
understands| agrees
E, 62.5 81.2 Fo,Er | 61.1 26.7
E 77.8 94.4 Fh,Es 31.2 :.3
E/2 85.7 ‘78.6 Fa by | 42.9 33.3
: . : Fo,Fs 44.4 20.0
Es s 71.4 33.3

Figure 2: The Shaw study [Shaw, 1988].

The Shaw study suggests that building a knowledge base representing consensus knowledge can be difficult.
There is evidence for this elsewhere. For example, between the various camps of KLp researchers, there
is little agreement on the internal details. Contrast the list of “reusable” problem solving methods from
KADS [Wielinga et al., 1992] and SBF [Marques et al., 1992] (termed “knowledge sources’ and “mechanism”
respectively). While there is some overlap, the lists are different. Also, the number and nature of the problem
solving methods is not fixed. Often when a domain is analysed using KXLp , a new problem solving method is
required [Linster & Musen, 1992]. Further, different interpretations exist of the same problem solving method.
For example:



Model % disorders identified | % knowledge fragments identified
1 (Epistemological) 50 28
2 (KADS) 55 34
3 (no model) 75 41

Figure 3: Analysis via different models in the Corbridge study [Corbridge et al., 1995].

e The problem solving method proposed by Bredeweg [Bredeweg, 1992] for prediction via qualitative
reasoning is different to the qualitative prediction problem solving method proposed by Tansley &
Hayball [Tansley & Hayball, 1993].

e The KADS problem solving methods for diagnosis [Wielinga et al.; 1992] is very different to the
assumption-space exploration model proposed by the model-based diagnosis community [Hamscher

et al., 1992]. Note that the KADS diagnosis model continues to change at a rapid rate (e.g. [Benjamins,
1995]).

Knowledge developed in one context may not be usefully reusable in another. Corbridge et. al. report
a study in which subjects had to extract knowledge from an expert dialogue using a variety of abstract
pattern tools [Corbridge et al., 1995]. In that study, subjects were supplied with transcripts of a doctor
interviewing a patient. From the transcripts, it was possible to extract 20 respiratory disorders and a total
of 304 “knowledge fragments” (e.g. identification of routine tests, non-routine tests, relevant parameters, or
complaints). Subjects were also supplied with one of three problem solving methods representing models of
the diagnostic domain. Each model began with the line “To help you with the task of editing the transcript,
here is a model describing a way of classifying knowledge”. Model one was an “epistemological model” that
divided knowledge into various control levels of the diagnosis process. Model one was the “straw man”; it
was such a vague description of how to do analysis that it should have proved useless. Model two was a
KADS problem solving method for diagnosis. Model three was “no model”; i.e. no guidance was given to
subjects as to how to structure their model. The results are shown in Figure 3. The statistical analysis
performed by Corbridge et. al. found a significant difference between the performance of groups 3 compared
to groups 1 and 2. Further, no significant difference could be found between the group using the poor problem
solving method (model 1) and the group that using a very mature problem solving method (model 2). That
is, sophisticated and mature descriptions of previously used knowledge (i.e. the KADS diagnosis description)
were not found to be a productivity tool.

3.2 About Weak SC

While human beings have found it useful to use symbolic descriptions when co-ordinating their activities, it
is not necessarily true that those symbolic descriptions are used internally by a single human in their own
reasoning processes. Clancey [Clancey, 1987, Clancey, 1991] and Winograd & Flores [Winograd & Flores,
1987] argue that it is a mistake to confuse the symbolic descriptions which humans use to co-ordinate their
activities and reflect about their actions (i.e. language) with how humans might generate their minute-to-
minute behaviour. That is, we should not confuse our conversations about our thoughts with the actual
content of those thoughts.

The Winograd & Flores line is that computers are not modeling tools per se but are really communication
tools that facilitate the mediation of the exchange of ideas. Similarly, Clancey rejects the view that human
inference is best replicated as matching/retrieving. Rather, says Clancey, these structures are created on-the-
fly as posthoc symbolic justifications of a process which is not symbolic:

The neural structures and processes that coordinate perception and action are created during
activity, not retrieved and rotely applied, merely reconstructed, or calculated via stored rules and
pattern descriptions [Clancey, 1993, p94].

Clancey’s view is not resolved merely by declaring that knowledge representations are approximate sur-
rogate models of reality (e.g. as proposed by [Davis et al., 1993]). Rather, Clancey believes that symbolic
structures are not only approximations of human knowledge but also that human knowledge changes as a
result of applying it.



Every action is an interpretation of the current situation, based on the entire history of our
interactions. On some sense every action is automatically an inductive, adjusted process [Clancey,

1987, p238].

Researchers into decision support tools make a case something like weak SC. They argue that hu-
man “knowledge” appears in some social context and that context can effect the generated “knowledge”.
Phillips [Phillips, 1984] and Bradshaw et. al. [Bradshaw et al., 1991] characterise model construction as a
communal process that generates symbolic descriptions that explicate a community’s understand of a problem.
If the community changes then the explicit record of the communities shared understanding also changes; i.e.
“truth” is socially constructed. Such an explicit expression of current beliefs may prompt further investiga-
tion and model revision; i.e. writing down models of “truths” can cause “truth” to change. Decision support
tools are discussed later (§4.6).

Suchman [Suchman, 1987, Suchman, 1993, Agre, 1990] argues that real-world planning systems have to
model their environment as well as their own goals. For example, a photocopier advisor system must. ..

...focus on the ways in which the photocopier and its user work together to maintain a shared
understanding of what is going on between the tow of them and the copier. .. Far from executing
a fully operational plan for effecting a fixed goal, the photocopier users continually reinterpreted
their situation and based their various actions on their evolving interpretations [Agre, 1990].

If weak SC was false, then we should see that using knowledge does not change that knowledge; i.e.
knowledge maintenance for static domains should terminate when it arrives at “truth”. Compton [Compton
et al., 1989] reports studies that documented the changes made to models of biochemistry diagnosis systems.
The Garvan ES-1, expert system was developed using a traditional iterative prototyping knowledge engineer-
ing methodology. Rules that began as simple modular chunks of knowledge evolved into very complicated and
confusing knowledge (e.g. Figure 4). Note that this system was developed in a static domain; i.e. the system
was a post-processor to a biochemical assay unit that did not change for the lifetime of the project. Despite
this, the Garvan ES-1 expert system never reached a logical termination point, despite years of maintenance.
There was always one more major insight into the domain, one more major conceptual error, and one more
significant addition [Compton et al., 1989]. A graph of the size of that knowledge base versus time (Figure 5)
is consistent with either a linear growth curve or a logarithmic curve. Note that a linear curve would support
the SC premise, while a logarithmic growth which would falsify weak SC since that would suggest that
the KB is approaching “the truth”. However, even if this was true for Garvan ES-1, note that the asymptote
is very slow (see the Logarithmic fit of Figure 5). Even if we can approach “the truth”, it seems it may take
years to do so.

Garvan ES-1 was decommissioned before enough data could be collected to test if the growth curve was
linear or logarithmic. Compton is monitoring the maintenance of PIERS [Preston et al., 1993], a much larger
system (which is version 2 of the above diagnosis system ). A y = 25 growth in KB size has been noted in that
system. Significantly, the user-group sponsoring the project have created a permanent line item in their budget
for maintenance. They anticipate that routinely every day, an expert will review the generated diagnoses and
change some of the KB. That is, they believe that the model will never be finished/correct [Compton, 1994].

Experiments in machine learning endorse the proposition that any version of a model can be improved
after more experience. Machine learning programs input training data to generate a model. Catlett’s re-
search [Catlett, 1991] explored the following area. Given a large amount of training data, is it necessary to
use it all? That is, after a certain number of examples, is further experience (i.e. training data) superfluous?
To test this, Catlett used C4.5 [Quinlan, 1986] to generate 20 decision trees for eleven machine learning
problems using either (i) all the training cases or (ii) half the cases (randomly selected). Each generated tree
was assessed using the test cases. In all cases, Catlett found that a statistically more accurate model could
be generated using all the training data, rather than some randomly chosen subset (Figure 6). Note that
while the theory learnt from N cases may be only marginally better than the theory learnt from N/2 cases
(average reduction in error = 0.97%), the size of the better theory is 30% to 90% bigger (average increase
in tree size = 53%); i.e. more examples prompted a significant reorganisation of the model (exception: the
demon domain). That is, we may never know enough to create the correct model and that experience can
significantly and continually modify old symbolic descriptions of knowledge.



A. Originally

RULE(22310.01)
IF (bhthy or
utsh_bhft4 or
vhthy) and not on_t4
and not surgery
and (antithyroid or
hyperthyroid)
THEN DIAGNOSIS("...thyrotoxicosis")

B. Same rule, 3 years later

RULE(22310.01)
IF ((((T3 is missing)
or (T3 is low and
T3_BORD is low))
and TSH is missing
and vhthy
and not (query_t4 or on_t4 or
or surgery or tumour
or antithyroid
or hypothyroid
or hyperthyroid))
or ((((utsh_bhft4 or
(Hythe and T4 is missing
and TSH is missing))
and (antithyroid or
hyperthyroid))
or utsh_bhft4
or ((Hythe or borthy)
and T3 is missing
and (TSH is undetect
or TSH is low)))
and not on_t4 and not
(tumour or surgery)))
and (TT4 isnt low or T4U isnt low)
THEN DIAGNOSIS("...thyrotoxicosis")

Figure 4: A rule maintained for 3 years. From [Compton et al., 1989].
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Figure 5: Garvan ES-1 knowledge base size



Y%error rates Tree size

Using N Using N/2 Using N Using N/2
cases cases cases cases
Domain | N test | mean sd mean sd mean sd mean sd
train- cases
ing

cases
demon 5000 2000| 0.19 0.09 0.37 0.2 20.8 5.02 21.3 5.44
diff 5000 2000| 1.58 0.31 2.27 0.38 87.7 6.13 59.8 6.10
othello 3000 2000 | 16.79 1.02 20.79 | 1.35 | 352.5 | 22.09 | 208.9 | 21.16
heart 3000 2000| 2.89 0.62 4.39 0.54 74.2 9.61 45.9 6.88
sleep 3000 2000| 25.24 0.65 27.62 | 0.85 | 234.7 | 20.79 | 135.2 | 17.69
hyper 5000 2000| 1.08 0.19 1.29 0.26 26.1 4.83 15 4.304
hypo 5000 2000 0.6 0.19 0.7 0.2 27.7 4.69 19.1 4.02
binding | 5000 2000| 2.11 0.31 2.57 0.43 46.9 8.84 30.9 7.063
replace 5000 2000| 1.41 0.34 1.76 0.34 30.7 7.66 22.1 6.27
euthy 5000 2000| 0.56 0.18 0.91 0.25 37.4 3.7 28 4.42
wave 5000 2000| 24.8 1.008 | 2593 | 0.91 625 41.08 | 326.9 | 23.63

Figure 6: The Catlett Study

3.3 About Strong SC: An Over-Reaction?

§3.1 endorsed the SC premise and §3.2 endorsed weak SC. However, this endorsement does not neces-
sarily imply an endorsement of strong SC. Like Vera & Simon in §4.1.3, this paper argues that symbolic
systems are still a useful paradigm. It is not necessarily true what (e.g.) Birnbaum [Birnbaum, 1991] and
McDermott [McDermott, 1987] argue; i.e. that the obvious alternative to logical Al is some type of proced-
ural/functional semantics (i.e. strong SC). McDermott’s motivation for a move away from symbols is based
on his view that there has been “skimpy results so far and . . .it is going to be very difficult to do much better
in the future” [McDermott, 1987, p151]'. Coming from McDermott, this is a telling criticism since, prior to
this article, he was one of the leading proponents of that logical school [Charniak & McDermott, 1987].

With the benefit of a little historical hindsight, we can defeat some of McDermott’s 1987 arguments. Mc-
Dermott repeatedly uses Forbus’ 1984 Qualitative Process Theory (QPT) [Forbus, 1984] as an worthy example
of an algorithmic/non-logical system. McDermott originally demanded in 1984 that Forbus record the logical
axioms underlying QPT. However, in 1987, McDermott comments that “...the task, seemingly so feasible
(is) actually impossible” [McDermott, 1987, p152]. Note that, 12 years later, QPT was later implemented
via a compilation into QSIM [Crawford et al., 1992]. QSIM was a special-purpose theorem-prover built by
Kuipers in 1986 for processing qualitative differential equations [Kuipers, 1986]. In 1993, Kuipers [Kuipers,
1993, p134] acknowledged is a textbook application of Mackworth’s constraint-logic system [Mackworth,
1977, Mackworth, 1992]. That is, QPT was an instantiation of a logic-based system. However, when it was
first developed, this was not known.

The lesson of the QPT story is that logical/symbolic descriptions could handle seemingly functional
semantics. Descriptive symbolic systems that could be said to handle weak SC without requiring strong

SC are described below (§4).

3.4 Experimental Evidence Against SC

There are two outstanding experimental studies that challenge the SC case that knowledge is context de-
pendent. Runkel reports large amounts of verbatim reuse using a toolkit of problem solving strategies that
separated search control from other domain knowledge [Runkel, 1995]. Marques et. al. report significantly re-
duced development times for expert systems using the 13 mechanisms in the SBF toolkit (eliminate, schedule,
present, monitor, transform-01, transform-02, compare-01, compare-02, translate-01, translate-02, classify,
select, dialog-mgr). In the nine applications studied by Marques et. al., development times changed from
one to 17 days (using SBF) to 63 to 250 days (without using SBF) [Marques et al., 1992]. To the best
of our knowledge, these two studies represent the current high-water marks in software reuse in both the

!Possibly, Vera & Simon would find McDermott’s claim here as “preposterous” as the similar claim of Agre (84.1.3)



conventional software engineering and knowledge engineering paradigms?.

Nevertheless, neither experiment is a convincing demonstration of general knowledge reuse. The Runkel
experiment had poor control of the resources used while the SBF experiment had poor control of the product
produced. All the applications studied in the SBF work were variations of the theme of computer configuration;
i.e. the Marques studied restricted the context of the test. In the Runkel study, it is not clear who built
the studied applications. If it was Runkel himself, then it is possible that the author’s internal (possibly
non-symbolic) model informed the usage of the tools. Also, Runkel does not report the time required to
use his approach; i.e. the Runkel study cannot be used to depend the proposition that reusing old symbolic
descriptions is a productivity tool for new applications.

4 Responses to Situated Cognition

One response to SC is to argue that current techniques work, so why do we need to change them? This
paper discounts this argument (§4.1) and move on to techniques that address weak SC. Weak SC sug-
gests that generating a explicit record of a specification is less of an issue than changing that specification
over time. Therefore, any technique which can support specification change is a potential response to SC;
e.g. verification & validation tools (§4.2), repertory grids (§4.3), expert critiquing systems (§4.4), machine
learning (§4.5), certain frameworks for decision support systems (§4.6), and ripple-down-rules (§4.7). Note
that:

e Most of these techniques come from authors who do not write about SC (exception: ripple-down-rules).
However, all this work emphasises that the ability to assess and alter a model is as important or more
important than the ability to initially specify it.

e These techniques are only potentially appropriate responses to SC. A method will be described below
to assess these techniques (§5.2).

4.1 Response: Ignore it
4.1.1 Not a KA Problem

Clancey cautions [Clancey, 1989a] that we should not confuse pragmatic discussions about techniques for
knowledge acquisition (e.g. [Clancey, 1985, Clancey, 1989b, Clancey, 1992]) with discussions about the basic
nature of human intelligence (e.g. [Clancey, 1987, Clancey, 1991, Clancey, 1993]). Clancey prefers to reserve
discussions on SC for the creation of human-equivalent robots which react to real-world situations since, he
says,

SC argues that human activity is not strictly mediated by inference over descriptions nor is activity
a compiled result of such inference [Clancey, 1996].

Clancey’s remarks notwithstanding, this paper argues that SC has a significant impact on KA. If weak
SC is true, then we cannot expect to reuse old symbolic descriptions of ontologies or PSMs as a productivity
tool for some current application. Instead of focusing on reusing old knowledge, KA SC-style should focus on
how we build and change models. That is, expertise is not a function of using a large library of old knowledge
as argued in [Larkin et al., 1980] and favoured by the KLp approach. Rather, expertise is the ability to
quickly adapt old models to new situations.

A KA methodology that acknowledges SC must offer details about creating and changing a knowledge
base. A review of the KA literature suggests that most of the effort is in knowledge analysis and not
knowledge maintenance (exceptions: [de Brug et al., 1986, Compton et al., 1989]). Current KA practice has
not acknowledged SC since, if it did, there would be more work in knowledge maintenance.

2Elsewhere [Menzies & Haynes, 1994], certain inflated claims of reuse [Stark, 1993] from the object-oriented community have
been criticised.



4.1.2 Evidence for SC Not Conclusive

It could be argued that the evidence for weak SC is not convincing. For example, a reviewer of this paper
wrote:

Discussion of the pilot study done by Corbridge (§3.1) involves results are too premature to bolster
the SC claim. Discussion of one PSMs in SBF and KADS (§3.4) also seems less than convincing
evidence for the SC claim.

This comment is true: the evidence above is not convincing. However, at the very least, the above evidence
is suggestive that we need to make a careful review of the perceived successes of current KA approaches.
Given the current lack of good experimental evidence demonstrating the utility of XLp (§3.4), we need to
do more experiments (§5.2).

4.1.3 “In Practice, SC is not a Problem”

Proponents of K£Lp may argue that they have no case to answer. By some measures, KLp is a successful
paradigm. For example, Wielinga et. al. report that, as of 1992, KADS has been used in some 40-to 50
KBS projects, 17 of which are described in published papers [Wielinga et al., 1992]. Further, if the situation
is as bad as suggested above, then how is it that we have so many seemingly successful expert systems (e.g.
MYCIN [Yu et al., 1979], CASNET [Weiss et al., 1978], PROSPECTOR [Campbell et al., 1982, Duda et al.,
1985], XCON [Bachant & McDermott, 1984], VT [Marcus et al., 1987], PIGE [Menzies et al., 1992])7

This kind of argument is the basis of Vera & Simon’s criticisms of SC [Vera & Simon, 1993b, Vera &
Simon, 1993a, Vera & Simon, 1993c]. They describe as “preposterous” [Vera & Simon, 1993a, p95] a claim
by Agre that “nobody has described a system capable of intelligent action at all- and that nothing of the
sort is going to happen soon” [Agre, 1993, p69]. We suspect that they would also object to McDermott’s
lament about “skimpy results so far” (§3.3). Vera & Simon argue that the physical symbol system hypothesis
(PSSH) [Newell & Simon, 1972] has been a fruitful paradigm which can reproduce many known behaviours
of experts. They decline to reject PSSH for strong SC since, if they adopted, e.g. Clancey’s situated
paradigm [Clancey, 1993], then they are unclear on what predictions can be made and what experiments can
be performed. That is, they argue that SC is unfalsifiable and unscientific?.

Nevertheless, it would be a mistake for proponents of KLp to use the Vera & Simon arguments as support
for their reuse paradigm. Vera & Simon are only arguing against strong SC (which they call “situated
action”). A symbolic system that can implement weak SC would still satisfy Vera & Simon’s broad definition
of a symbolic system while challenging the KLp paradigm.

Further, just because a system based on explicit symbolic descriptions works, this says nothing about
the best way to build and maintain those symbolic descriptions. Clancey acknowledges the role of symbolic
descriptions in working systems [Clancey, 1987, p278] [Clancey, 1992]. Symbolic descriptions, Clancey argues,
are useful to planning about the future and reflecting on action rather than immediately reacting to a new
situation.

Human reasoning is immensely more successful by our ability to simulate what might happen,
to visualize possible outcomes and prepare for them. We do this by reflecting, saying what we
expect, and responding to what we say [Clancey, 1987, p247].

However, Clancey’s symbolic descriptions are not as fixed as those in Ontolingua [Gruber, 1993] or the
inference layer of KADS.

It remains to explain how (the symbolic descriptions) develop. ... Most learning programs gram-
matically describe how representations accumulate within a fixed language. They don’t explain
how representations are created, or more generally, the evolution of new routines not described
by the given grammar [Clancey, 1991, p279].

Knowledge acquisition is the key point that is ignored by Vera & Simon. They comment on the suc-
cesses of working symbolic descriptions of human knowledge, not on the effort involved in constructing those

3While this paper agrees that the PSSH is still a useful paradigm (hence the rejection of strong SC), it is not necessarily
true that SC research is not scientific. Subsequently, a empirical experiment for evaluating SC will be defined (§5.2)



descriptions. Despite careful attempts to generalise principles of knowledge acquisition, (e.g. [Stefik et al.,
1982]), expert systems construction remained a somewhat hit-and-miss process. By the end of the 1980s, it
was recognised that our design concepts for knowledge-based systems were incomplete [Buchanan & Smith,
1989]. For example, Steels [Steels, 1994] cites an example where an expert could not solve a problem over the
phone but, as soon as they walked into the room where the trouble was, could solve it instantly. Examples
like this encourage the knowledge-relativists within KA to argue that we have under-valued the role of context
in the creation of our symbolic descriptions.

4.2 Response: Use Verification & Validation Tools

Weak SC suggests that a specification considered correct at time 7 may become potentially incorrect at
T5. Tt has been argued previously [Menzies & Compton, 1995] that such potentially inaccurate models must
be tested, lest they generate inappropriate output for certain circumstances. Testing can only demonstrate
the presence of bugs (never their absence) and so must be repeated whenever new data is available. That is,
testing is an essential, on-going process through-out the lifetime of a knowledge base.

Preece and Zlatereva describe test programs based on the logical structure of rule-based expert systems.
Preece’s verification tools detect anomalies in those structures [Preece, 1992] while Zlatereva’s validation
tools analyse that structure to generate a test suite which will exercise all parts of the rule-base [Zlatereva &
Preece, 1994]. Verification tools search for syntactic anomalies within a knowledge base such as tautologies,
redundancies, and circularities in the dependency graph of literals in a knowledge base [Preece & Shinghal,
1992]. Many of Preece’s verification tools can be mapped into a graph-theoretic analysis of the dependency
graph D of literals in a KB used in HT4 (e.g. Figure 7.A). For example, a test for “unreachable conclusions”
can be converted into the following graph-theoretic process. Compute the components (separate sub-graphs)
of D. If a component contains conclusions but no system inputs, then those conclusions are unreachable.
Also, a test for “circularities” can be converted into a computation of the transitive closure of D. “Looping”
means finding a literal in its own transitive closure. Verification is not a definitive test for a KBS. Preece
reports example where working expert systems contained syntactic anomalies, yet still performed adequately
(recall Figure 1).

Validation tools assess knowledge via some external semantic criteria; e.g. testing that a knowledge base
model of X can reproduce known behaviour of X. If such a test suite of behaviour is missing, then non-
monotonic reasoning techniques can be used to explore the dependency graph between KB literals to find
sets of input literals which will exercise the entire knowledge [Ginsberg, 1990, Zlatereva, 1992]. However, an
expert still has to decide what output is appropriate for each generated input. This can introduce a circularity
in the testing procedure. After an expert describes their world-view in a model, that same expert will be a
asked to specify the results of certain inputs. If the expert then uses the same model to predict the output,
then they would be using a potentially faulty model to generate a potentially faulty prediction about the
output.

Our preferred validation approach is for the input-output test pairs to be generated totally separately to
the current model; e.g. from real-world observations of the entity being modeled in the KB. Based on work
by Feldman & Compton [Feldman et al., 1989], a general validation framework based on the HT4 abductive
inference engine has been developed. Elsewhere [Menzies, 1996a], we have given an overview of abductive
research [O’Rourke, 1990, Bylander et al., 1991, Eshghi, 1993,Selman & Levesque, 1990, Poole, 1990b, Menzies,
1996a]. Here, we offer an approximate characterisation of abduction as the search for consistent subsets of some
background theory that are relevant for achieving some goal. If multiple such subsets can be generated, then
a BEST assessment operator selects the preferred world(s). For example, suppose HT4 wants to validate
that certain QU7 put goals can be reached from using the ZA puts shown in the dependency graph D of

Figure 7.A. In that Figure, x e y denotes that y being up or down can be explained by x being up or

down respectively and x — y denotes that y being up or down could be explained by x being down or up
respectively. HT4 can find the following proofs connecting QU7Ts to ZN's: Py=aUp — xUp — yUp — dUp,
Py= alp — cUp — gUp — dUp, P3s= alUp — cUp — gUp — eUp, Ps= bUp — cDown — gDown — fDown, P5=
bUp — fDown.

These proofs may contain assumptions, i.e. literals that are not known FACT S. Continuing the example
of Figure 7.A, if FACTS=ZN U OUT, then {xUp,yUp,cUp, cDown, gUp, gDown} are assumptions. If we
can’t believe that a variable can go up and down simultaneously, then we can declare {cUp, cDown, gUp,
gDoun} to be conflicting (denoted A.). Figure 7.A shows us that g is fully dependent on c. Hence the key
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Figure 7: Worlds generation

conflicting assumptions are {cUp, cDown} (denoted base controversial assumptions or Ap). We can used Ay
to find consistent belief sets called worlds W. A proof P; is in W; if that proof does not conflict with the
environment EN'V; (an environment is a maximal consistent subset of A;). In our example, EN'V={cUp}
and EN'Vy={cDown}. Hence, Wi ={P1, Ps, P3, Ps} and Wo={P; P4 Ps} (see Figure 7.B)*.

Abductive validation is simply the application of the above algorithm with a BEST assessment oper-
ator that returns the world(s) with the maximum cover; i.e. overlap with OUT. The overlap of W, and
OUT is {dUp,eUp,fDown} and the overlap Wy and OUT is {dUp,fDoun}; i.e. W = 3 = 100% and
Wsover = 2 = 67%. The maximum cover is 100%; i.e. their exist a set of assumptions ({cUp}) which let us
explain all of OUT and this theory has passed HT4-style validation. Note that this procedure corresponds to
answering the following question: “how much of the known behaviour of X can be reproduced by out model
of X77.

This abductive validation was applied to Smythe ’89, a model of glucose regulation published in an
international, refereed journal [Smythe, 1989]. Using an earlier version of HT4 (which they called QMOD and
we call HT1) Feldman & Compton reported that only 69% of the known observations could be explained by
Smythe ’89n [Feldman et al., 1989]. In our re-work of that study, and-vertex processing and multiple causes
processing was added, thus allowing the processing of more of the known observations. With those changes,
HT4 found that only 55% of the observations were explicable [Menzies, 1996b]. When these errors were shown
to Smythe, he found them novel and exciting [Feldman et al., 1989]; i.e. the domain expert found that these
errors were significant. This is both a disturbing and exciting finding. It is disturbing in the sense that if the
very first large-scale medical theory analysed by HT4 contains significant numbers of errors, then it raises
doubts as to the accuracy of theories in general (a result which would be consistent with the SC premise).

4.3 Response: Use Repertory Grids

Gaines & Shaw explore techniques for resolving conflicts in terminology. The conceptual systems of different
experts are explicated and compared using a technique called entity-attribute grid elicitation [Gaines & Shaw,
1989]. Experts are asked to identify dimensions along which items from the domain can be distinguished. The
two extreme ends of these dimensions are recorded left and right of a grid. New items from the domain are
categorised along these dimensions. This may elicit new dimensions of comparisons from the expert which will
cause the grid to grow (see [Shaw & Gaines, 1992] for a sample of such grids). Once the dimensions stabilize,
and a representative sample of items from the domain have been categorised, then the major distinctions and
terminology of a domain has been defined. Differences between the conceptual views of different experts can
be identified (e.g. their categorisations are different). Gaines & Shaw describe automatic tools for generating
plots representing the proximity of different expert’s conceptual systems [Gaines & Shaw, 1989].

Gaines & Shaw focuses on identifying and resolving conflicts in the meaning of individual terms, not
on conflicts in the semantics of the models built using combinations of those terms. A model-level conflict
detection facility such as abductive validation requires knowledge of how terms are combined.

4The connection of HT4 to DeKleer’s ATMS system [DeKleer, 1986] is explored elsewhere [Menzies, 1996a]



4.4 Response: Expert Critiquing Systems

Silverman [Silverman, 1990, Silverman, 1992] advises that attached to an expert system should be an expert
critiquing system which he defines as:

...programs that first cause their user to maximise the falsifiability of their statements and then
proceed to check to see if errors exist. A good critic program doubts and traps its user into
revealing his or her errors. Tt then attempts to help the user make the necessary repairs [Silverman,

1992].

Silverman divides an expert critiquing system into (i) a deep model which can generate behaviour; (ii)
a differential analyser which compares the generated behaviour with the expected behaviour; and (iii) a
dialogue generator that explains the errors and assists in correcting them. Dialogue generators are very
domain-specific. Silverman’s research seems to be aimed at an implementation-independent analysis of the
process of “critiquing” a program;i.e. “critiquing” as an add-on to existing systems, not as a built-in that is
fundamental to the whole KBs life cycle. While this approach is useful, a more extensible approach would to
change the structure of knowledge- bases systems such that critiquing is built into the system (see §5.1). In
the case where the design of the system can be altered to integrate a testing module, the abductive approach
of HT4 is an alternative approach to critiquing. Silverman’s “deep models” are the theory that generates the
proofs (e.g. Figure 7.A) while the difference analyser is the BEST assessment operator which reports what
behaviours can’t be covered.

4.5 Response: Use Machine Learning

Validation and verification techniques can only automatically find faults. Machine learning (ML) techniques
can fully or partially automate the creation or the firing of a specification. Given some input facts, some
goals, and some prior knowledge, then ML can use induction, analogy, deduction, or heuristic techniques to
generate a revision to the prior knowledge [Michalski, 1993].

If numerous examples are available (say, hundreds to thousands), then empirical inductive techniques
such as mathematical regression, genetic algorithms, neural nets or other techniques (e.g. nearest-neighbor
algorithms, decision-tree generation, simple Bayesian reasoning [Kohavi et al., 1996]) can propose a new
theory. These techniques have not come to replace standard knowledge acquisition for several reasons.
Firstly, most naturally-occurring domains are data-poor. Automatic empirical inductive generalisation in
such data-poor domains is an unreliable technique. Secondly, once a theory is revised, the revisions must be
acceptable to a human reader. Empirical inductive generalisation techniques such as neural nets, genetic
algorithms, or decision tree learners may generate a revision of prior knowledge that is too big or too
awkward to read. Further, most empirical inductive generalisation machine learning algorithms (e.g. the
C4.5 decision tree of Figure 6) make no attempt to preserve current beliefs (exception: inductive logic
programming [Muggleton, 1991]). It may be unacceptable to permit a learning algorithm to scribble all over
a knowledge base, particularly those portions which the user has some commitment to.

In domains that lack sufficient input facts for empirical inductive generalisation, then deductive ML al-
gorithms exist which (i) build an explanatory structure across the current knowledge base then (ii) edit
this structure to generate a refinement to the knowledge base. This can be done using automatic tools (e.g.
explanation-based generalisation [van Harmelen & Bundy, 1988]) or semi-automatic tools where the user’s
opinions are used as part of the theory refinement loop. Heuristic KB refinement (e.g. KRUST [Craw et al.,
1994, Palmer & Craw, 1995] and expert critiquing systems (§4.4)) are a kind of “machine learning” algorithm
in which domain-specific principles are used to fault a KB and assist a human in fixing the faults.

Note that the new theory learnt by deductive ML algorithms can only ever be a subset of the prior
knowledge over which explanatory structures can be build. For example, the worlds of Figure 7.B represent
the consistent explanation structures we can generate from Figure 7.A. Each such set is just a subset of the
edges in the dependency graph between the literals of Figure 7.A. If we cached these worlds, then we could
say we have “learnt” that in the case of Figure 7.A| there are two possibilities depending on the value of c.

In domains that lack both sufficient input facts for empirical inductive generalisation and prior knowledge,
then the only other way to build a theory is to ask an expert; i.e. standard knowledge acquisition. In decision
support systems (§4.6), for example, developers are not recording a model of an existing domain. Rather,
they are using software tools to build a model for a newly, poorly understood domain which has not been
previously documented.



4.6 Response: Treat KA as Decision Support Systems

Workers in decision support systems deliberately try to model the context of the decision making process.
DSS theory believes that management decision making is not inhibited by a lack of information. Rather, it 1s
confused by an excess of irrelevant information [Ackoff, 1967]. Modern decision-support systems (DSS) aim
to filter useless information to deliver relevant information (a subset of all information) to the manager. Simon
originally characterised decision making as a three stage process: intelligence (scanning environment), design
(develop alternative courses), and choice (selection of alternative) [Simon, 1960]. Our preferred definition of a
decision-support system is based on Brookes [Brookes, 1986]” who developed it from Simon’s and Mintzberg’s
model [Mintzberg, 1975]. The goal of a DSS is management comfort, i.e. a subjective impression that all
problems are known and under control. More specifically, managers need to seek out problems, solve them,
then install some monitoring routine to check that the fix works. A taxonomy of tasks used in that process is
shown in Figure 8.

Finding Problems \Detection Intelligence
Diagnosis

Alternative Generation Design
Comfort Solving Problems < Alternative Evaluation
Alternative Selection} Choice

Resolution ————————————— Monitoring

Figure 8: Components of management comfort

Other DSS workers have a similar view. Boose, Bradshaw, Koszack, and Shema (BBKS) [Boose et al.,
1992] discuss DSS architectures suitable for groups. The BBKS system lacks an execution module for the
generated models as part of the group decision support environment. Boose etf. al. assume that once the
group’s mode is elicited, it will be subsequently exported into an executable form. Portions of the BBKS
and the Brookes’ models overlap. The BBKS system lets groups manipulate their group model, its inter-
relationships, and the group’s criteria for selecting the best alternative. BBKS stress that:

The process of generating and scoring alternatives are at the heart of most decision processes. [Boose

et al., 1992]

That is, more important than representing and executing a model is an ability to assess a model. Note
that the BEST operator of HT4 directly implements this alternative generation, assessment, and selection
procedure. Further, abduction can be used for other DSS tasks such as diagnosis [Console & Torasso, 1991]
and monitoring®.

4.7 Response: Ripple-Down-Rules

KLp (§2) typically assumes that prior to building a system, an extensive analysis stage develops a design
for the system. Compton reports experiments with a completely reversed approach. In ripple-down-rules
(RDR), there is no analysis period. Starting with the single rule “if true then no classification”, KA in an
RDR system consists only of fixing faulty rules using an unless patch attached at the end of a rule condition.
Patches are themselves rules which can be recursively patched. Experts can never re-organise the tree; they
can only continue to patch their patches. If a new case motivates a new patch, that this case is stored with
the new patch. Compton argues that these (RDR) trees models the context of knowledge acquisition. When
a case 1s processed by an RDR tree, its context is the set of cases in the patches exercised by the new case.
When looking for new patches, experts can only choose from the difference of the attributes in the current
case and the attributes exercised down to the current faulty rule.

5Given N worlds representing possibilities, monitor incoming data. Reject the world(s) whose assumptions conflict with the
new data. The remaining worlds are the current possibilities.



RDR trees are a very low-level representation. Rules cannot assert facts that other rules can use. In no
way can a RDR tree be called a model in anything like a KLp sense. Yet this low-level model-less approach
has produced large working expert systems in routine daily use. For example, the PTERS system at St.
Vincent’s Hospital, Sydney, models 20% of human biochemistry sufficiently well to make diagnoses that are
99% accurate [Preston et al., 1993]. RDR has succeeded in domains where previous attempts, based on much
higher-level constructs, never made it out of the prototype stage [Patil et al., 1981]. Further, while large
expert systems are notoriously hard to maintain [de Brug et al., 1986], the no-model approach of RDR has
never encountered maintenance problems. System development blends seamlessly with system maintenance
since the only activity that the RDR interface permits is patching faulty rules in the context of the last error.
For a 2000-rule RDR system, maintenance is very simple (a total of a few minutes each day). Compton
argues that his process of “patching in the context of error” is a more realistic KA approach than assuming
that a human analyst will behave in a perfectly rational way to create some initial correct design [Compton

& Jansen, 1990].

5 Assessing Responses to Situated Cognition

Weak SC suggests that, as far as possible, the symbolic structures inside an expert system must be change-
able. Any representational system assumes certain primitives which can’t be changed. KLp assumes that a
PSM does not change over the lifetime of a project. Hence, our preferred response to SCis a PSM-maintenance
environment called ripple-down-rationality, or RD-RA.

RD-RA is described below (§5.1). This description is only a preliminary sketch since it is new work-in-
progress. We present it here in order to motivate our SC experiment (§5.2). If the reader disagrees with our
proposal, we invite them to consider how they would assess the success or failure of RD-RA.

5.1 RD-RA: Ripple-Down-Rationality

For reasons of generality, we base RD-RA around the HT4 abductive validation engine. Note that many
common knowledge representations can be mapped into dependency graphs like Figure 7.A. For example,
horn clauses can be viewed as a graph where the conjunction of sub-goals leads to the head goal. In the special
(but common) case where the range of all variables is known (e.g. propositional rule bases), this graph can
be converted into a ground form where each vertex is a literal. Invariants may be added to represent sets
of literals that are mutually exclusive (e.g. c¢Up and cDown). Such graphs are commonly computed for the
purposes of optimisation or verification (§4.2).

An interesting feature of abduction is that it both a validation and an inference engine. It maps ex-
actly into Clancey’s characterisation of expert systems as devices that build a system-specific model (SSM)
or Breuker’s component’s of solutions [Breuker, 1994, Clancey, 1992]. As evidence of this, we can express
the details of a wide range of KBS tasks in this abductive framework; e.g. intelligent decision support sys-
tems (§4.6 & [Menzies, 1995a]), diagrammatic reasoning [Menzies & Compton, 1994], single-user knowledge
acquisition, and multiple-expert knowledge acquisition [Menzies, 1995c¢], certain interesting features of human
cognition [Menzies, 1995d]. natural-language processing [Ng & Mooney, 1990], design [Poole, 1990a], visual
pattern recognition [Poole, 1990c], analogical reasoning [Falkenhainer, 1990], financial reasoning [Hamscher,
1990], machine learning [Hirata, 1994], case-based reasoning [Leake, 1993], expert critiquing systems (§4.4),
prediction, classification, explanation, tutoring, qualitative reasoning, planning, monitoring, set-covering dia-
gnosis, consistency-based diagnosis, verification and validation (§4.2 & [Menzies, 1996a, Menzies, 1996b]).
Further, abduction handles certain hard and interesting cases; such as the processing of indeterminate, under-
specified, globally inconsistent, poorly measured theories. Inferencing over such theories implies making
assumptions and handling mutually exclusive assumptions in different worlds.

RD-RA is a combination of RDR with HT4 and a graph-theoretic version of SOAR. Recall Newell’s
principle of rationality (§2): part of intelligence is the appropriate selection of operators to decide between
possible inferences. HT4’s BEST operator’s can be characterised by how much information they require to
execute. A node-level operator could assess the utility of using some edge based on some numeric weight on
that edge. A proof-level operator could assess the utility of using some edge based on its contribution to a
growing proof and how that growing proof compares to other known proofs (e.g. like in beam search). A
worlds-level operator could assess the utility of a world based on various criteria (e.g. the validation BEST



in §4.2).

In RD-RA, a PSM is implemented as sets of BEST operators. If we use RDR rules to control the
modifications of the different levels of BEST operators then, potentially, we a maintenance environments for
PSMs. Recall that each BEST operator is a small procedure that classifies each proposed inference (edge,
world) as “acceptable” or “cull”. A little RDR KB could maintain each BEST operator.

5.2 The Assessment Experiment

Consider a KB comprising a state space connecting literals and a PSM which controls the traversal of that
state space. Weak SC has no impact of KA and RD-RA is unnecessary if, in the usual case, the edges and
the PSM do not change radically after some initial analysis period.

Let us characterise two opposing KA processes:

1. An analysis intensive process (AIP) where most of the knowledge base is found via an analysis that
precedes building the executing system; e.g. KADS [Wielinga et al., 1992]. In an AIP system built
in the HT4 framework, most of the edges of the theory and all of the PSM would be added before the
system has processed ZAN'put, OUT put pairs.

2. A maintenance intensive process (MIP) where most of the knowledge base or the structure of the PSMs
are found via fixing the runtime system once an error is found; e.g. RDR (§4.7) or RD-RA (§5.1). In
an MIP system built in the RD-RA framework, most of the edges of the theory and much of the RDR
trees controlling the BEST operators would not be added till after the system has processed ZAput,
OUTput pairs (recall that in RD-RA, a PSM is implemented as sets of BEST operators).

Note that if we add modification dates to all edges, PSMs, and ZAput, QU7 put pairs then we can
auto-detect if a software artifact is generated via MIP or AIP.

Both MIP and AIP contribute edges to a knowledge base dependency graph. This knowledge base is
subsequently evaluated via our validation process (§4.2). We would declare MIP or ATP to be satisfactory
if it can generate competent systems from the same specification (e.g. one of the Sisyphus projects [Linster,
1992]). Note that we can assess competence via the HT4 abductive validation algorithm.

Our validation process also lets us identify good edges (§4.2). Further, we can declare a BEST operator to
be good if it was exercised in the generation of good edges. We would declare either the MIP or AIP process
superior if it produced more good edges/operators sooner than the other.

We would declare weak SC irrelevant to the practice of KA if curves of “number of good edges changed”
vs “months in production” or “revisions to good operators” vs “months in production” (e.g. a variant on
Figure 5) flatten out very quickly. We can also falsify the SC premise if ATP KA is superior to MIP KA
when both are applied to the same application.

Note that the above process has to be repeated a number of times over similar applications developed by
skilled programmers who know their tools; i.e. such as in the Sisyphus experiments.

6 Conclusion

Existing KA methods, including KLp , can deliver successful applications (§4.1.3). However, which is the
best method? The crucial test for a particular KA technique is not whether or not it can deliver applications.
Rather, it should be “can method X deliver applications better than the alternatives?”.

In this paper two alternative approaches to KA have been characterised: (i) analysis-intensive processing
(the dominant view) and (ii) maintenance intensive processing (a minority view). Tt has been argued that there
is enough evidence for weak SC to motivate a review of analysis intensive processing. Current experimental
evidence is not sufficient to inform such a review. Hence, several potential responses to the challenge of SC
have been discussed and a experiment that could determine the impact (if any) of weak SC on KA has been
proposed.

In order for this test to be fair to the current XLp paradigm, we will need to build a set of translators that
convert the constructs found in current KBS and information systems methodologies down into structures
like the HT4 graphs. The implementation of a library of such translators is our current TROJAN project.
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