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Abstract

A single inference procedure (abduction) can oper-
ationalise a wide variety of knowledge-level mod-
eling problem solving methods; i.e. prediction,
classi�cation, explanation, tutoring, qualitative
reasoning, planning, monitoring, set-covering dia-
gnosis, consistency-based diagnosis, validation,
and veri�cation. This abductive approach o�ers
a uniform view of di�erent problem solving meth-
ods in the style proposed by Clancey and Breuker.
Also, this abductive approach is easily extensible
to validation; i.e. using this technique we can
implement both inference tools and testing tools.
Further, abduction can execute in vague and con-

icting domains (which we believe occur very fre-
quently). We therefore propose abduction as a
framework for knowledge-level modeling.

1 Introduction

In the 1970s and early 1980s, several high-pro�le
expert system successes were documented: e.g.
MYCIN [86], CASNET [82], PROSPECTOR [7,
20], and XCON [1]. However, despite careful at-
tempts to generalise this work (e.g. [78]), expert
systems construction remains a somewhat hit-and-
miss process. By the end of the 1980s, it was re-
cognised that our design concepts for knowledge-
based systems were incomplete [5].
A new expert system design approach (which has

come to dominate the knowledge acquisition �eld)
is the the search for reusable abstract domain-
independent problem-solving strategies. We call
this approach KLB since it is a variant of
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Newell's knowledge level (KL) modeling approach
[46, 53, 55, 54]. The fundamental premise of
KLB is that a knowledge base should be di-
vided into domain-speci�c facts and domain-
independent abstract problem solving inference
procedures (e.g. Clancey's model construction op-
erators [12], Steels' components of expertise [77],
Chandrasekaran's task analysis [8], SPARK/
BURN/ FIREFIGHTER [42] and KADS [84]).
KLA refers to Newell's research on the knowledge
level [53, 55, 54] and the SOAR project [73, 85].
KLA does not explicitly model problem-solving
procedures. The observation that a KLA system
such as SOAR is performing (e.g.) classi�cation is
a user-interpretation of

1. The application of domain-speci�c knowledge
controlling...

2. ... a single inference procedure (operator se-
lection over a problem space traversal) [85].

This paper argues for a variant on the KLA ap-
proach. Like KLA , we will use a single inference
procedure (abduction). However, we take a graph-
theoretic approach rather than the production-
system approach used by SOAR (see section 6.3.
for a comparison of our approach and SOAR).
We �nd that a wide-variety of problem solving
strategies are merely di�erent types of calls to the
same abduction procedure. Such uniformity sim-
pli�es the construction of interfaces between the
inputs and outputs of di�erent problem solving
types. Breuker argues that such interfacing is es-
sential since most problem solving types are used
in combination to perform some task [4].
Far from being radical proposal, we �nd that our

abductive process directly operationalises the the-
ory subset extraction process that Breuker [4] and
Clancey [11, 12] argue is at the core of expert sys-
tems. Clancey o�ers a two-layered extraction pro-
cess (qualitative model to situation-speci�c model)
while Breuker o�ers a four-layered view (generic
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jX j;X \ Y Size of the set X, the intersection of the sets X and Y
S A statement provided by an expert.
T A theory comprising a set of statements; e.g. Figures 2 & 9.
D A dependency graph showing connections between literals in T ; e.g. Figures 3 & 10.

< V; E > Vertices and edges in D. Vertices are either and-vertices Vand or or-vertices Vor .
I An invariants predicate reporting pairs of incompatible vertices in D.

NOGOODS Sets of incompatible vertices; generated using I.
model compiler A translator from T to D.

F The fanout of D; i.e. average number of edges from a vertex. F = jE j

jV j
.

OUT The subset of V we are trying to explain.
IN The subset of V which are acceptable starting-points of an explanation.

FACT S Vertices we cannot doubt.
DEFAULT S IN vertices that are not FACT S.

P Proof trees connecting OUT to IN . Each proof Pi using vertices Vusedi , and avoids the vertices

Vforbid
i

.
A Assumptions made by P; i.e. Pused

i � FACT S.
AC Assumptions which I tells us are contradictory.
AB The most upstream controversial assumptions.
ENV Maximal (with respect to size) consistent (de�ned using I) subsets of AB.
Wi A world: the set of proofs that are consistent with ENVi; e.g. Figures 4, & 5.

cover, causes Outputs and inputs in a world. cover = jOUT \Wij; causes = jIN \Wij.
BEST Competing worlds are judged by the BEST assessment operator.
T ASK The goal of an inference procedure: T ASK = < BEST ;IN ;OUT >

Figure 1: Summary of terms.

domain model to case model to conclusion to ar-
gument structure). We take theory subset extrac-
tion to be a literal description of the internals of
expert systems inference. Our research goal is the
description of the minimal architecture necessary
to perform this process.

This paper is organised as follows. A sum-
mary of the terms introduced in this article is
given in Figure 1. Section 2 describes the the-
ory subset extraction described by Clancey and
Breuker. Section 3 describes our abductive frame-
work. Section 4 discusses the use of abduction
for a variety of KLB tasks; i.e. prediction, classi-
�cation, explanation, tutoring, qualitative reason-
ing, planning, monitoring, set-covering diagnosis,
consistency-based diagnosis, validation, and veri-
�cation. Section 5 discusses the practicality of our
proposal. Section 6 discusses some related work
and issues.

Note that this work is part of our abductive reas-
oning project. We believe that abduction provides
a comprehensive picture of declarative knowledge-
based systems (KBS) inference. Apart from the
problem solving methods discussed here, we also
believe that abduction is a useful framework for
intelligent decision support systems [44], diagram-
matic reasoning [51], single-user knowledge ac-
quisition, and multiple-expert knowledge acquis-
ition [48]. Further, abduction could model cer-

tain interesting features of human cognition [49].
Others argue elsewhere that abduction is also a
framework for natural-language processing [56],
design [61], visual pattern recognition [62], ana-
logical reasoning [24], �nancial reasoning [32], ma-
chine learning [33] and case-based reasoning [39].

2 Clancey & Breuker

In this section, we argue that the common theme
between Clancey's and Breuker's view of expert
systems inference is the extraction of a sub-theory
from a super-theory.

2.1 Model Construction Operators

Clancey characterises expert system inference
as model construction operators that create a
situation-speci�c model (SSM) from a general qual-
itative model (QM) in the knowledge base (KB).
Clancey's QM is like a �rst-order theory whose re-
lations model causality, sub-types, and temporal
relations. At runtime, portions of this theory are
accessed and the variables are bound. This ground
subset of the full theory is the SSM; i.e. "the spe-
ci�c model the program is constructing of the par-
ticular system it is (processing)" [12]. This speci�c
model is the subset of the QM that is relevant to
the task at hand.
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Clancey argues that there are two basic problem-
solving methods used by expert systems: heuristic
classi�cation and heuristic construction [12]. By
heuristic classi�cation, Clancey means that the in-
ference engine merely selects a pre-existing infer-
ence path. In heuristic classi�cation, this pathway
would include:

� Inference to an abstracted description of the
problem at hand;

� A partial match of this problem to an abstrac-
ted solution;

� An inference that specialises the abstracted
solution to a solution relevant to the current
problem.

By heuristic construction, Clancey means that
the inference engine constructs its conclusions from
partial inferences supplied in the knowledge base.
Construction is much harder than mere selection.
Literals in di�erent partial proofs may be mutu-
ally exclusive; i.e. while we can believe A _ B ,
it may not be true that we can believe A ^ B .
The constructed SSM must be built with care in
order to take into account these cancelation inter-
actions. Multiple, mutually exclusive, SSMs may
be possible and these must be managed separately.
Extra architecture is required to handle con
icts
and dependencies within the SSM.

2.2 Components of Solutions

Breuker explores the relationships between prob-
lem solving techniques used in expert systems (i.e.
modeling, planning, design, assignment, predic-
tion, assessment, monitoring and diagnosis) [4].
He o�ers an abstract description of the "compon-
ents of a solution" generated by these techniques
which, he argues, are of four types:

� A case model (equivalent to Clancey's SSM)
that represents some understanding of a prob-
lem;

� A conclusion, which is some answer to a ques-
tion posed by the problem de�nition;

� An argument structure, which is supporting
evidence for the conclusion generated.

� The case model which is generated from some
generic domain model (equivalent to Clan-
cey's QM).

An argument structure is extracted from the
case model. The conclusion is the portion of an
argument structure that is relevant to the user. In
the case where all the solution components are rep-
resented as a ground propositional theory whose
dependency graph has edges E, then:

edges(answer) �
edges(argument structure) �

edges(case model) �
(edges(generic domain model) = E)

where edges(X) denotes the edges of the depend-
ency graph present in X.

2.3 Theory Subset Extraction: an
Example

We now describe theory subset extraction in de-
tail using a theory of vertices V and edges E. This
example will informally introduce many of the con-
cepts we will return to later. In summary, we will
search our theory for a subset of its edges that are
relevant to some problem. The found subset must
be internally consistent (i.e. we have to check for
cancelation e�ects between mutually exclusive as-
sumptions).
Consider the qualitative theory [35] of Figure 2.

a e

c g

d

x y

++

++ ++

++ ++

++

++ ++

b f
++

--
--

Figure 2: An indeterminate qualitative theory.

In that �gure:

� All vertices can take one of three values: UP,
DOWN, or STEADY.

� X
++
! Y denotes that Y being UP or DOWN

could be explained by X being UP or DOWN
respectively;

� X
��
! Y denotes that Y being UP or DOWN

could be explained by X being DOWN or UP
respectively.

Let us make some qualitative reasoning assump-
tions about Figure 2:
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� The conjunction of an UP and a DOWN can
explain a STEADY;

� No change can be explained in terms of a
STEADY (i.e. a STEADY vertex has no chil-
dren).

With these assumptions, we can expand Figure 2
into Figure 3. That �gure contains one vertex for
each possible state of the vertices of Figure 2. It
also contains and vertices that models combina-
tions of in
uences (for example, aUp and bUp leads
to cSteady).

bDown

aUp

xUp

eUp

fUp

gUpcUp

dUp

yUp

yDown

eDown

fDown

gDowncDown

bUp

xDown

fSteady&001

&004

&003

&005

dSteady

dDown

&006

&007

&008

aDown

xSteady

cSteady

&002

Figure 3: The edges E tacit in Figure 2.

Figure 3 represents the superset of all ex-
planations possible from Figure 2; i.e. it is
an explicit ground version of Clancey's QM and
Breuker's generic domain model. Given some in-
puts (denoted IN ) and some desired goals (de-
noted OUT ), then we can use Figure 3 to generate
a set of explanatory proofs (denoted P). For ex-
ample, if

IN = {aUp, bUp}

OUT = {dUp, eUp, fDown}

then all the proofs which can link members of IN
to members of OUT across Figure 3 are:
p(1) = aUp! xUp! yUp! dUp

p(2) = aUp! cUp! gUp! dUp

p(3) = aUp! cUp! gUp! eUp

p(4) = bUp! cDown! gDown! fDown

p(5) = bUp! fDown

Some of these proofs are contradictory since that
make con
icting assumptions. An assumption is a
literal that is not one of the known FACT S (typ-
ically, FACT S = IN [ OUT ). Our assumptions
are fxUp, yUp, cUp, gUp, cDown, gDowng. If
we assume that an entity can't be in two di�erent
states at the same time, then the following assump-
tions are con
icting and controversial: fcUp, gUp,

cDown, gDowng. Note that, in Figure 2, g is fully
determined by c. Therefore, in terms of sorting
out the various possibilities, the key controversial
assumptions are fcUpg or fcDowng.
Depending on which controversial assumptions

we adopt, we can believe di�erent things. In
this example, we have two possibilities: one for
fcUp, dUpg and one for fcDown, dDowng. The
proofs that are consistent with fcUp, dUpg are
fP1, P2, P3, P5g and the proofs that are consist-
ent with fcDown, dDowng are f P1, P4, P5g. The
union of the proofs that we can believe at the same
time are the Clancey SSM or the Breuker case
model (we will call them worlds below). There are
two such case models, shown in Figure 4 and Fig-
ure 5.

fDownbUp

aUp

xUp

eUp

gUpcUp

dUp

yUp

Figure 4: Case model #1: The union of proofs that
are consistent with fcUp, gUpg.

aUp

xUp

dUp

yUp

gDown

fDown

cDown

bDown

Figure 5: Case model #2: The union of proofs that
are consistent with fcDown, gDowng.

Queries can be executed over each case model to
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generate Breuker's argument structures or conclu-
sions. For example, in case model#1 (Figure 4),
an argument structure for the conclusion dUp could
be aUp! xUp! yUp! dUp.

3 Abduction

We believe that abduction is a powerful framework
for describing the above theory subset extraction
process. In this section, we repeat the above ex-
ample in terms of HT4 [48], our preferred abduct-
ive framework. In the next section, we will argue
that many KLB tasks are just di�erent ways of
calling HT4.

3.1 De�nitions

Informally, abduction is typically de�ned as infer-
ence to the best explanation (e.g. [57]). Given � ,
�, and the rule R1 : � ` �, then deduction is using
the rule and its preconditions to make a conclusion
(� ^ R1 ) �); induction is learning R1 after see-
ing numerous examples of � and �; and abduction
is using the postcondition and the rule to assume
that the precondition could explain the postcondi-
tion (� ^R1 ) �) [40]. Abduction is not a certain
inference and its results must be checked by an in-
ference assessment operator (which we call BEST
and Bylander et. al. [6] call the plausibility oper-
ator pl).

3.2 HT4 and Abduction

More formally, abduction is the search for assump-
tions A which, when combined with some theory
T achieves some set of goals OUT without caus-
ing some contradiction [22]. That is:

EQ1: T [ A ` OUT

EQ2: T [ A 6`?

While abduction can be used to generate explan-
ation engines (see section 4.3), we believe that EQ1

andEQ2 are more than just a description of \infer-
ence to the best explanation". EQ1 and EQ2 can
be summarised as follows: make what inferences
you can that are relevant to some goal, without
causing any contradictions. Note that the proof
trees used to solveEQ1 and EQ2 are the case mod-
els/SSMs/worlds we seek to compute.
To execute HT4, the user must supply a the-

ory T (e.g. T 1 = Figure 2) comprising a set of
uniquely labeled statements Sx. For example, from
Figure 2, we could say that:

s[1] = plus_plus(a,c).

s[2] = minus_minus(b,c).

etc.

An Si statement is like a macro that expands
into the super-set of explanations acceptable to the
author of Si. This super-set is the search space
for the proof generation. We represent this search
space as a dependency graph D. D is directed and
possibly cyclic. Figure 3 shows D1, the depend-
ency graph generated from T 1. D is an and-or
graph comprising << Vand;Vor >; E ; I >; i.e. a
set of directed edges E connecting vertices V con-
taining invariants I. I is de�ned in the negative;
i.e. :I means that no invariant violation has oc-
curred. Each edge Ex and vertex Vy is labeled with
the Sz that generated it. Figure 3 contains sample
and-vertices and or-vertices. For example:

� xUp is an or-vertex which we can believe if we
also believe dUp or aUp.

� &003 is an and-vertex which we can believe
if we also believe gUp and bUp (but see sec-
tion 4.2 for alternative ways of handling and-
vertices).

Not shown in Figure 3 are the invariants I. For
a qualitative domain, where entities can have one
of a �nite number of mutually exclusive values, the
invariants are merely all pairs of mutually exclusive
assignments; e.g.:

%i(X,Y): X and Y cannot be believed together

i(aUp, aSteady). i(aSteady, aUp).

i(aUp, aDown). i(aDown, aUp).

i(bUp, bSteady). i(bSteady, bUp).

i(bUp, bDown). i(bDown, bUp).

etc.

3.3 The Model Compiler

When converting T i to Di, a model compiler is re-
quired to capture any special domain semantics.
For example, in a qualitative reasoning domain,
we can reach a STEADY via a conjunction of
two competing upstream in
uences (e.g. &003).
In practice, these model compilers are very small.
Our qualitative domain compiler is less than 100
lines of Smalltalk.
HT4-style inference is feasible for representa-

tions that support such a translator between T and
D. Recall that D is an explicit and-or graph of lit-
erals (positive or negative propositions) that rep-
resents the superset of explanations acceptable to
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the author of T . Such and-or graphs can be extrac-
ted from many representations including proposi-
tional expert systems and certain types of equa-
tional systems [36, 34]. HT4 could also be used for
�rst-order theories, but only where that theory can
be partially evaluated to an equivalent ground (i.e.
no variables) theory.
Once such a model-compiler is available, then

the practical limit to HT4 is the size of D. These
limits are explored further in Section 5.

3.4 Proofs of OUT puts

HT4 extracts subsets of E which are relevant to
some user-supplied T ASK. Each T ASKx is a
triple < IN ;OUT ;BEST >. Each task comprises
some OUT puts to be reached, given some INput
(OUT � V and IN � V). IN can be either be
a member of the known FACT S or a DEFAULT
belief which we can assume if it proves convenient
to do so. Typically, FACT S = IN [ OUT .
If there is more than one way to achieve the
T ASK, then the BEST operator selects the pre-
ferred way(s).
To reach a particular output OUT z 2 OUT ,

we must �nd a proof tree Px using vertices Pused
x

whose single leaf is OUT z and whose roots are
from IN (denoted Proots

x � IN ). All immediate
parent vertices of all and-vertices in a proof must
also appear in that proof. One parent of all or-
vertices in a proof must also appear in that proof
unless Vory 2 IN (i.e. is an acceptable root of

a proof). No subset of Pused
x may contradict the

FACT S; e.g. for invariants of arity 2:

:(Vy 2 Pused
x ^ Vz 2 FACT S ^ I(Vy;Vz))

3.5 Assumption Sets

The union of the vertices used in all proofs that
are not from the FACT S is the HT4 assumption
set A; i.e.

A =

0
@[

Vy

n
Vy 2 Pused

x

o1A� FACT S

Recall from the above that the proofs in our ex-
ample made the assumptions:

a = {xUp, yUp, cUp, gUp, cDown, gDown}

The union of the subsets of A which violate I
are the controversial assumptions AC :

AC =
[

Vx

fVx 2 A ^ Vy 2 A ^ I(Vx;Vy)g

The controversial assumptions of our example
were:

ac = {cUp, gUp, cDown, gDown}

The base controversial assumptions (AB) are the
controversial assumptions which have no contro-
versial assumptions in their ancestors (i.e. are
not downstream of any other controversial assump-
tions). The base controversial assumptions of our
example are:

ab = {cUp, cDown}

3.6 World Generation

Maximal consistent subsets of P (i.e. max-
imal with respect to size, consistent with re-
spect to I) are grouped together into what
we call worlds W (W i � E) (recall that
world � case model � SSM). Each worldWi con-
tains a consistent set of beliefs that are relevant to
the T ASK. The union of the vertices used in the
proofs of W i is denoted W

used
i .

In terms of separating the proofs into worlds, AB

are the crucial assumptions. We call the maximal
consistent subsets of AB the environments ENV
(ENV i � AB � AC � A � V). The environments
of our example are:

env(1) = {cUp}

env(2) = {cDown}

The union of the proofs that do not contradict
ENV i is the world Wi. One world is de�ned for
each environment; i.e. jWj = jENVj. In order to
check for non-contradiction, we use I to �nd the
vertices that are forbidden by each proof:

Pforbids
j =

[

V l

n
Vk 2 P

used
j ^ I(Vk;Vl)

o

For example, Pforbids
5 = fbDown, bSteady,

fUp, fSteadyg.
A proof Pj belongs in worldW i if its forbids set

does not intersect with ENV i; i.e.:

W i =
[

Pj

n
Pforbids
j \ ENV i = ;

o

Note that each proof can exist in multipleworlds.
The worlds of our example are:

w(1) = {p(1), p(2), p(3), p(5)}

w(2) = {p(1), p(4), p(5)}

W1 is shown in Figure 4 and W2 is shown in
Figure 5.
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3.7 Assessing Worlds

For any world Wi, W
causes
i are the members of

IN found in W i (W
causes
i = Wused

i \ IN ).
The achievable or covered goals OUT in Wi

are the members of OUT found in that world
(Wcovered

i = Wused
i \ OUT ). Continuing our

example:

causes(w(1)) = {aUp, bUp}

causes(w(2)) = {aUp, bUp}

covered(w(1)) = {dUp, eUp, fDown}

covered(w(2)) = {dUp, fDown}

Note that, in our example, we have generated
more than one world and we must now decide
which world(s) we prefer. This is done using the
BEST criteria. Clancey has a clear opinion on
what is the BEST world:

When there are multiple causal links for
classifying data - multiple explanations-
inference must be controlled to avoid re-
dundancy, namely multiple explanations
when one would have been su�cient.
The aim is to produce a coherent model
that is complete (accounting for the most
data) and simple (involving one fault pro-
cess) [11, p331]

Expressed in terms of HT4, Clancey's preferred
BEST is to favour worlds that maximises the
covered while minimising the causes (ideally, to
a single cause). Numerous other BEST s can be
found in the literature; e.g. the BEST worlds are
the one which contain:

1. the most speci�c proofs (i.e. largest size) [28];

2. the fewest causes [69];

3. the largest covered [47, 45];

4. the largest number of speci�c concepts [59];

5. the largest subset of E [56];

6. the largest number of edges that model pro-
cesses which are familiar to the user [58];

7. the largest number of edges that have been
used in prior acceptable solutions [39];

Our view is that BEST is domain speci�c; i.e.
we believe that their is no best BEST .

3.8 HT4 is Abduction

Given certain renamings, HT4 satis�es the de�n-
ition of abduction given in Section 3.2 (see
EQ1; EQ2). HT4-style abduction is the search
for (i) a subset of E called Wi, (ii) a subset of
IN called Wcauses

i , (iii) a subset of OUT called
Wcovered

i , and (iv) a subset of V called ENVi such
that:

EQ1:1: Wi ^W
causes
i ^ ENVi ` W

covered
i

EQ2:1: Wi ^W
causes
i ^ ENVi ^W

covered
i ^ :I

The assumptions A found by HT4 are the use-
ful inputs (Wcauses

i ), some assumptions about in-
termediaries between the useful inputs and the
covered outputs (ENV i), and the edges relevant
to a particular T ASK (Wused

i ). In the case where
multiple worlds can be generated, the BEST oper-
ator decides which world(s) to show to the user.

4 Applications of Abduction

This section argues that a wide variety of
KLB tasks can be mapped into the above abductive
framework.

4.1 Prediction

Prediction is the process of seeing what will follow
from some events IN . This can be implemented in
HT4 by makingOUT � V � IN ; i.e. �nd all the
non-input vertices we can reach from the inputs.
This is a non-naive implementation of prediction
since mutually exclusive predictions (the covered
elements of OUT ) will be found in di�erent worlds.
Note that in the special case where:

� IN are all root vertices in D.

� FACT S = ;

� OUT = V � IN

then our abductive system will compute ATMS-
style total envisionments; i.e. all possible consist-
ent worlds that are extractable from the theory (for
more on the ATMS, see Section 6.4). A more e�-
cient case is that IN is smaller than all the roots
of the graph and some interesting subset of the
vertices have been identi�ed as possible reportable
outputs (i.e. OUT � V � IN ).
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if day = tuesday and weather = fine and

wind = high

then wash

if weather = raining and football = on

then watchTV

Figure 6: T 2: Tuesday can be washing day.

4.2 Classi�cation

Classi�cation is just a special case of prediction
with the interesting subset set to the vertices rep-
resenting the possible classi�cations. Consider a
theory T containing conjunctions of attributes that
list the properties of some class. When converted
to D, the classes and attributes become di�erent
vertices of D. Inference edges are added from the
attributes to the proposition that some class is true
(the modus ponens link). Further, we link the neg-
ation of the class with the negation of the condi-
tions (the modus tollens link). For example, the
rules in Figure 6 are the theory T 2. When ex-
ecuting this theory, OUT are the classes fwash,
watchTVg. Note that we can use the modus
tollens links to prove not(watchTV) if we can prove
not(weather=raining) or not(football=on).
D2 is generated by a model-compiler for pro-

positional systems (see Figure 7, note the modus
tollens links). The invariants for D2 are shown in
Figure 8. D2 contains partial-match and-vertices
(&009=partial and &010=partial). HT4 can in-
terpret partial-match vertices in one of two ways:

� Total-match: Partial-match vertices can be
used as a true and-vertex; i.e. we
can only reach wash if we can also
reach all of fday=tuesday, weather=fine,

wind=highg.

� True partial-match: In the partial-match case,
HT4 would treat (e.g. &009=partial) as an
or-vertex during world generation. However,
when applying BEST PARTIAL�MATCH , we
could elect to favour the worlds that con-
tain post-conditions with the most number of
pre-conditions. For example, if FACT S was
fday=tuesday, football=ong and we had
no information about the weather or the wind,
then a BEST operator could still make a case
that watchTV was more likely than wash since
50% of the ancestors of watchTV are known
compared with 33% of the ancestors for wash.

day = tuesday

wind = high

weather = fine

weather=raining watchTV

&009=partial

&010=partial

wash

not(day = tuesday)
not(weather = fine)

not(wind = high)

not(weather=raining) not(watchTV)

not(wash)

not(football=on)

football=on

modus tollens links

modus ponens links

Figure 7: D2 generated from T 2.

% A proposition and its negation are

% inconsistent

i(not(X),X).

% X cannot be in two different states

i(X=State1,X=State2) :- not(State1=State2).

% Can't wash and watch TV at the same time.

i(wash,watchTV).

Figure 8: Invariants I for D2.

The model compiler for theories containing gen-
eralisation links (e.g. T 3 shown in Figure 9) must
add extra links. Given a super-class, we can infer
down to some sub-class if we can demonstrate that
the extra-properties required for the sub-class are
also believable. The vertex &013=partial in Fig-
ure 10 is such a specialisation link (for the sake of
simplicity, we do not show the modus tollens links
in Figure 10).

T 3 contains an interesting semantic issue. Emus
override the motion slot inherited from birds. Ig-
noring, temporarily, this issue, we can see from
D3, we can infer from bird to emu if that an-
imal lives in Australia. The classi�cations re-
turned by HT4 could be further customised by us-
ing BEST SPECIFIC that favours the worlds that
include the most-speci�c classes [59] (e.g. emu is
better than bird).

Returning now to the motion issue, we note that
cancelations in inheritance networks is a di�cult
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frame(bird, [diet = worms,

big-limbs = 2,

motion = flies,

home = nest]).

% An emu is a bird that does not fly and

% lives in australia

frame(emu, [isa = bird,

habitat = australia,

motion = walks]).

Figure 9: T 3: Things that 
y and walk.

home = nest

motion = flies

motion = walks

bird

&011 = partial emu

&012 = partial

&013 = partial

big-limbs = 2

diet = worms

habitat = australia

Figure 10: D3 (modus ponens links only).

problem. Brachman argues that we should not
use these since such overrides complicate the se-
mantics of the network [3] (e.g. Figure 11). In
the general case, the processing of overrides in in-
heritance networks requires some form of multiple-
worlds reasoning [23] such as default logic [71]).
Default logic and abduction share a computational
core [74]. Using HT4, we can process T 3. In
the case where motion is an assumption and both
motion = walks and motion = flies appear in
proofs, then emu and bird will appear in separate
worlds. BEST can then be customised to select
the world(s) that are most acceptable to the user
(e.g. BEST SPECIFIC ).

4.3 Explanation

Wick and Thompson report that the current view
of explanation is more elaborate than merely \print
the rules that �red" or the \how" and \why" quer-
ies of MYCIN [83]. Explanation is now viewed as
an inference procedure in its own right rather than
a pretty-print of some �ltered trace of the proof
tree. In the current view, explanations should be
customised to the user and the task at hand. For
example, Paris describes an explanation algorithm
that switches from process-based explanations to

frame(generic_bird, [diet = worms,

big-limbs = 2,

home = nest]).

frame(bird, [isa = generic_bird,

motion = flies]).

frame(emu, [isa = generic_bird,

habitat = australia,

motion = walks]).

Figure 11: T 3:1: A Brachman-style version of T 3.

parts-based explanations whenever the explanation
procedure enters a region which the user is familiar
with [58].
This current view of explanation can be modeled

as abduction (an insight we �rst gained from
Leake [39]). Given a user pro�le listing the ver-
tices familiar to the user and the edges repres-
enting processes that the user is aware of, then
BEST EXPLANATION favours the worlds with the
largest intersection to this user pro�le. For ex-

ample, suppose the link g
++
! e in Figure 2 repres-

ented a process that some user did not understand.
Their user pro�le would therefore not contain the
edge gUp ! eUp. Applying BEST EXPLANATION ,
we would reject W1 (see Figure 4) and report W2

(see Figure 5).

4.4 Tutoring

Suppose we can assess that the BEST explain-
able world was somehow sub-optimum; e.g. there
exists worlds which explain far more OUT puts
that those explained by the worlds found by
BEST EXPLANATION . We could then set a tu-
toring goal; i.e. educate our user about the edges
which they currently can't accept as explanations.

Continuing the example in the previous section,
an abductive tutoring system would note that the

user's lack of knowledge about g
++
! e was com-

promising their ability to reason e�ectively. Hence,
it would could present to the user INput-OUT put
pairs which exercised that edge. The tutoring ses-
sion would be termed a success when the user start-
ing accepting explanations based on g

++
! e.

4.5 Qualitative Reasoning

HT4 was originally developed as a qualitative reas-
oning algorithm for neuroendocrinology [25, 26,
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52]. Qualitative reasoning is the study of systems
whose numeric values are replaced by one of three
qualitative states: UP, DOWN or STEADY [35].
A fundamental property of such systems is their
indeterminacy. In the case of competing qual-
itative in
uences, three possible results are UP,
DOWN or STEADY. These alternatives and their
consequences must be considered separately.
Abduction can maintain these alternatives in

separate worlds. The processing of T 1 (described
above) shows how we process qualitative theories
abductively. For more details, see [48].

4.6 Planning

Planning is the search for a set of operators that
convert some current state into a goal state. We
can represent planning in our abductive approach
as follows:

� Represent operators as rules that convert
some state to some other state;

� Augment each operator rule with:

{ a unique label S1, S2, etc. When D is
generated, each edge will now include the
name(s) of the operator(s) that generated
it.

{ A cost �gure representing the e�ort re-
quired to apply this operator rule.

� Set IN to the current state, OUT to the goal
state, and FACT S = IN [OUT .

� Set BEST PLANNING to favour the world(s)
with the least cost (the cost of a world is the
maximum cost of the proofs in that world).

� Run HT4. Collect and cache the generated
worlds.

� For each BEST world, collect all the names of
the operators used in the edges of that world.
These operators will be in a tree structure that
re
ects the structure of the BEST worlds. Re-
port these trees as the output plans.

4.7 Monitoring

Monitoring is the process of checking that the cur-
rent plan(s) are still possible. The worlds gener-
ated by the above planner will contain some as-
sumptions. As new information comes to light,
some of these assumptions will prove to be invalid.
Delete those worlds from the set of possible plans.

The remaining plans represent the space of pos-
sible ways to achieve the desired goals in the cur-
rent situation. If all plans are rejected, then run
HT4 again with all the available data.

4.8 Diagnosis & Probing

Parsimonious set-covering diagnosis [69] uses a
BEST that favors worlds that explain the most
things, with the smallest number of diseases (i.e.
maximiseWx \ OUT and minimiseWx \ IN ).
Set-covering diagnosis is best for fault models and
causal reasoning [38].
The opposite of set-covering diagnosis is

consistency-based diagnosis [19, 29, 60, 72] where
all worlds consistent with the current observations
are generated1. Computationally, this is equival-
ent to the prediction process described above, with
small variants. For example, in Reiter's variant on
consistency-based diagnosis [72], all predicates re-
lating to the behaviour of a theory component Vx
assume a test that Vx in not acting ABnormally;
i.e. :AB(Vx). BEST REITER is to favour the
worlds that contain the least number of AB as-
sumptions.

A related task to diagnosis is probing. When ex-
ploring di�erent diagnosis, an intelligent selection
of tests (probes) can maximise the informationgain
while reducing the testing cost [19]. In HT4, we
would know to favour probes of AB over probes of
AC over probes of non-controversial assumptions.

4.9 Validation

KBS validation tests a theory's validity against ex-
ternal semantic criteria. Given a library of known
behaviours (i.e. a set of pairs < IN ;OUT >), ab-
ductive validation uses a BEST that favours the
worlds with largest number of covered outputs (i.e.
maximise IN \ Wx) [47].

Note that this de�nition of validation corres-
ponds to answering the following question: \can a
theory of X explain known behaviour of X?". We
have argued elsewhere that this is the de�nitive
test for a theory [45]. Note that this is a non-naive
implementation of KBS validation since it handles
certain interesting cases. In the situation where no
current theory explains all known behaviour, com-
peting theories can still be assessed by the extent
to which they cover known behaviour. Theory X is

1For an clear comparison of set-covering diagnosis as
abduction and consistency-based-diagnosis as abduction
see [14]
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de�nitely better than theory Y if theory X explains
far more behaviour than theory Y.
As an example of validation-as-abduction,

recall that W1 (see Figure 4) was gener-
ated from T 1 when IN = faUp, bUpg and
OUT = fdUp, eUp,fDowng. Note that Wcovered

1

is all of OUT . T 1 is hence not invalidated since
there exists a set of assumptions under which the
known behaviour can be explained.
HT4 was originally built for validation pur-

poses (HT is short for \hypothesis tester").
The historical precursor to HT4 was Feldman
& Compton's QMOD/JUSTIN system (which we
call HT1). Feldman & Compton applied their
QMOD/JUSTIN algorithm [25, 26] to a qualit-
ative model of a summary paper by Smythe [76]
on glucose regulation. They found that 109 of the
343 (32%) data points published to support the
Smythe theory could not be explained with respect
to that theory. Further, when they showed these
�ndings to the researchers who contributed to the
Smythe theory, they found that the errors detec-
ted by QMOD/JUSTIN had not been seen before.
That is, the faults detected by QMOD/JUSTIN
were invisible to existing model review techniques
in neuroendocrinology (all the analysed models and
data were taken from international refereed journ-
als). Our own subsequent study using HT4 correc-
ted some features of the Feldman& Compton study
to increase the inexplicable percentage from 32% to
45%. DSMYTHE contained 294 and-vertices, 260
or-vertices and had an average fanout of 2.25 (the

fanout F of a graph equals jEj
jV j

as is the average

number of edges leaving a vertex).
Another smaller study [43] found faults in an-

other published scienti�c theory [75]. Apart from
the insights into neuroendocrinological models, the
above results are interesting for two reasons:

� 32-45% inexplicable data seems surprisingly
high for models that have run the gauntlet
of international peer review. We will later
�nd that the computational complexity of the
validation-as-abduction inference process is
high. It is therefore no surprise that human
beings, with their limited short-term memory,
do not completely test their models.

� Signi�cantly, this study faulted a model us-
ing the data published to support that model.
Clearly, human researchers do not rigorously
explore all the consequences of their observa-
tions (perhaps since the process is so compu-
tational complex). Automatic tools such as

HT4 can be a useful intelligent assistant for
checking hypothetical ideas.

An interesting variant on our external semantic
testing approach are the automatic test suite gen-
eration procedures o�ered by the dependency-
network approaches of Ginsberg [30, 31] and
Zlatereva [87, 88]. The dependencies between
rules/conclusions are computed and divided into
mutually consistent subsets. The root dependen-
cies of these subsets represent the space of all reas-
onable tests. If these root dependencies are not
represented as inputs within a test suite, then the
test suite is incomplete. Test cases can then be
automatically proposed to �ll any gaps.
The advantage of this technique is that it can

be guaranteed that test cases can be generated to
exercise all branches of a knowledge base. The dis-
advantage of this technique is that, for each pro-
posed new input, an expert must still decide what
constitutes a valid output. This decision requires
knowledge external to the model, least we intro-
duce a circularity in the test procedure (i.e. we test
the structure of T i using test cases derived from
the structure of T i). Further, auto-test-generation
focuses on incorrect features in the current model.
We prefer to use test cases from a totally external
source since such test cases can highlight what is
absent from the current model. For these reasons,
we caution against automatic test suite generation.
Nevertheless, if it is required, HT4 can compute
these test suites. Once a total envisionment is ex-
ecuted (recall section 4.1), the required test suites
are the roots and base controversial assumptions
of the generated worlds.

4.10 Veri�cation

KBS veri�cation tests a theory's validity against
internal syntactic criteria [67]. HT4 could be used
for numerous KBS veri�cation tests. For example:

� Circularities could be detected by computing
the transitive closure of the and-or graph. If
a vertex can be found in its own transitive
closure, then it is in a loop.

� Ambivalence (a.k.a. inconsistency) could be
reported if more than one world can be gener-
ated.

� Un-usable rules could be detected if the edges
from the same Sx statement in the know-
ledge base touch vertices that are incompat-
ible (de�ned by I).
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We prefer external semantic criteria (e.g. the
above validation technique) to internal syntactic
criteria since we know of �elded expert systems
that contain syntactic anomalies, yet still perform
adequately [68].

5 Practicality

5.1 Complexity

The core computational problem of HT4 is the
search for the assumptions ENV i which de�ne each
world W i. Earlier versions of HT4 [25, 26, 43]
computed the BEST worlds W via a basic depth-
�rst search chronological backtracking algorithm
(DFS) with no memoing. Mackworth [41] and
DeKleer [16] warn that DFS can learn features
of a search space, then forget it on backtracking.
Hence, it may be doomed to waste time re-learning
those features later on. One alternative to chro-
nological backtracking is an algorithm that caches
what it learns about the search space as it executes.
HT4 runs in four \sweeps" which learn and cache
features of the search space as it executes: the facts
sweep, the forwards sweep, the backwards sweep,
and the worlds sweep.

5.1.1 Facts Sweep

In the case where < V ; E > is pre-enumerated
and cached and I has an arity of 2, a hash table
NOGOOD can be built in O(jV j2) time that maps
every vertex to the set of vertices that it is incom-
patible with. Once NOGOOD is known, the facts
sweep can cull all Vx that are inconsistent with
the FACT S in time O(jV j). Note a simplifying
assumption made by HT4 is that NOGOODs are
only de�ned for Vor vertices (i.e. the NOGOOD
sets for Vand are empty).

5.1.2 Forwards Sweep

The controversial assumptions AC are computed
as a side-e�ect of forward chaining from IN (ig-
noring I) to �nd IN�, the vertices reachable from
IN . In the worst case, �nding IN � is transitive
closure (i.e. O(jV j3). Once IN � is known, AC can
be found in time O(jV j).

5.1.3 Backwards Sweep

The base controversial assumptions AB are com-
puted as a side-e�ect of growing proofs back from

OUT across IN �. Each proof Py contains it's for-

bids set (the vertices that, with Pused
y , would viol-

ate I), and the upper-most AC (called the proof
guess) found during proof generation. The back-
wards sweep handles Vor vertices di�erently to
Vand vertices:

� A candidate Vorx for inclusion in Pused
y must

satisfy Vorx 62 Pused
y (loop detection) and Vorx 62

Pforbids
y (consistency check). If the candid-

ate vertex is added to the proof, the vertices
that are NOGOOD with Vorx are added to
Pforbids
y .

� After checking for looping, a candidate Vandx

(which is not a partial-and vertex) that seeks
inclusion in Pused

y must check all combinations
of all proofs which can be generated from its
parents. The cross-product � of the proofs
from the Vandx parent vertices is calculated
(which implies a recursive call to the back-
wards sweep for each parent, then collecting
the results in a temporary). The proofs in
�i plus P

used
y are combined to form the single

proof �0i. Proof combination generates a new
proof whose used, forbids and guesses sets are
the union of these sets from the combining
proofs. A combined proof is said to be valid if
the used set does not intersect with the forbids
set. Each valid �0i represents one use of V

and
x

to connect an OUT vertex to the IN set.

� Partial-and vertices are treated as or-vertices
by the backwards sweep.

After all the proofs are generated, the union of
all the proof guess sets is AB. If the average size
of a proof is N and the average fanout of the graph

is F , then worse case backwards sweep is O(NF ).

5.1.4 Worlds Sweep

HT4 assumes that its Vor are generated from at-
tributes with a �nite number of mutually exclusive
discrete states (e.g. fday=mon, day=tues,: : :g).
With this assumption, the generation of ENV i is
just the cross product of all the used states of all
the attributes found in AB. The worlds sweep is
simply two nested loops over each ENV i and each
Pj (i.e. O(jENVj � jPj)).
Somewhere within the above process, the BEST

criteria must be applied to cull unwanted worlds.
HT4 applies BEST after world generation. There
is no reason why certain BEST s could not applied
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earlier; e.g. during proof generation. For example,
if it is known that BEST will favour the worlds
with smallest path sizes between inputs and goals,
then a beam-search style BEST operator could cull
excessively long proofs within the generation pro-
cess.
More generally, we characterise BEST s into the

information they require before they can run:

� Vertex-level assessment operators can execute
at the local-propagation level; e.g. use the
edges with the highest probability.

� Proof-level assessment operators can execute
when some proofs or partial proofs are known;
e.g. beam search.

� Worlds-level assessment operators can execute
when the worlds are known; e.g. the validation
algorithm described in section 4.9.

While the complexity of BEST is operator spe-
ci�c, we can make some general statements about
the computational cost of BEST . Vertex or proof-

level assessment reduce the O(NF ) complexity
of the backwards sweep (since not all paths are
explored). Worlds-level assessment is a search
through the entire space that could be relevant to
a certain task. Hence, for fast runtimes, do not use
worlds-level assessment. However, for some tasks
(e.g. the validation task) worlds-level assessment
is unavoidable.

5.2 Experiments

Abduction has a reputation of being impractically
slow [22]. Selman& Levesque show that even when
only one abductive explanation is required and D is
restricted to be acyclic, then abduction is NP-hard
[74]. Bylander et. al. make a similar pessimistic
conclusion [6].
In practice these theoretical restrictions may not

limit application development. Ng & Mooney re-
port reasonable runtimes for their abductive sys-
tem using a beam-search proof-level assessment
operator [56]. Figure 12 shows the average runtime
for executing HT4 using a worlds-level assess-
ment operator over 94 and-or graphs and 1991
< IN ;OUT > pairs [45]. For that study, a \give
up" time of 840 seconds was built into the test en-
gine. HT4 did not terminate for jVj � 850 in
under that \give up" time (shown in Figure 12 as
a vertical line).
In practice, how restrictive is a limit of 850 ver-

tices? Details of the nature of real-world expert
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Figure 12: Average runtimes.

Application jVj jEj
jV j

displan 55 2
mmu 65 7
tape 80 4
neuron 155 4
DMS-1 510 6

Figure 13: Figures from �elded expert systems.

systems are hard to �nd in the literature. The
only reliable data we could �nd is shown in Fig-
ure 13 which shows the size of the dependency
graph between literals in �elded propositional ex-
pert systems [68]. Figure 13 suggests that a prac-
tical inference engine must work at least for the

range 55 � jVj � 510 and 2 � jEj
jV j

� 7.

Note that the Figure 12 results were obtained
from a less-than-optimum platform: Smalltalk/V
on a PowerBook170 (a port to \C" on a Sparc sta-
tion is currently in progress). However, the current
results on a relatively slow platform show that even
when we run HT4 sub-optimally (i.e. using worlds-
level assessment), it is practical for the theory sizes
we see in practice.
Figure 14 studies the practicality of HT4 for

models of varying fanout [48]. In this study,
model size was kept constant while the fanout
was increased. Six models were used of sizes
jVj = f449; 480; 487; 494;511;535g. At low fan-
outs, many behaviours were inexplicable. However,
after a fanout of 4.4, most behaviours were explic-
able. Further, after a fanout of 6.8, nearly all the
behaviours were explicable.
We make two conclusions from Figure 14:

1. HT4 is practical for nearly the range of fanouts
seen in �elded expert systems.

13



25

50

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

% OUT
covered

Average fanout (jEj=jVj )

449 3

3 3

3

3 3 3

480 �

�

�

�

�

� �

487 ?

?

?

?

?

? ?

494 4

4

4

4

4 4

4 4

511 +

+

+

+

+

+

+

+ +

535 2

2

2

2
2

2 2

Figure 14: Explicable outputs.

2. However, after a certain level of inter-
connectivity, a theory is able to reproduce
any input/output pairs. An inference pro-
cedure that condones any behaviour at all
from a theory is not a useful inference pro-
cedure. After the Pendrith limit (the point
where % OUT covered approaches 100%) then
worlds-level abductive assessment becomes
useless.

We do not view the Pendrith limit as a drawback
of our particular abductive approach. Rather, we
interpret this result as a general statement of limits
to expert systems inference. The advantage of our
abductive framework is that it provides for a simple
computational view of KBS inference. The com-

putational limits to abduction are really the com-
putational limits to expert systems inference [45].
Figure 14 is telling us that we lose the ability to
reason meaningfully about any knowledge base for
tasks requiring worlds-level assessment (e.g. val-

idation) if it is highly connected (i.e. jEj
jV j

> 7).

This point is explored further in [45].

6 Discussion

6.1 Abduction and KLB

HT4 is more general than Clancey's approach since
it makes explicit certain assumptions which are
only tacit in Clancey's approach. For example,
Clancey assumes that the best world uses the few-
est number of IN s [11, p331]. We have shown
above that this is not universally true (recall the
di�erent BEST s listed above in sections 3 and
4). Further, HT4 is a single approach for imple-
menting both heuristic classi�cation and construc-
tion. HT4 supports all the inference primitives
required for heuristic classi�cation; i.e. partial
match, and the ascent and descent of classi�cation
hierarchies. To execute heuristic classi�cation-as-
abduction, just execute HT4 with no invariants.
Any proofs found between IN and OUT can be
reported to the user. HT4 also supports the in-
ference primitive required for heuristic construc-
tion: assessment of competing inferences. The
construction of an SSM from a QM that satis-
�es some task (speci�ed by < IN ;OUT >) in
the presence of invariants is exactly the HT4 al-
gorithm described above. Both proposals can gen-
erate multiple worlds/SSMs. Note that HT4 worlds
are guaranteed to satisfy Clancey's coherence re-
quirement.
As to Breuker's proposal, his components of

solutions sounds to us like three recursive calls to
a single inference procedure. Recall his argument:
all expert system tasks contain the same four com-
ponents of solutions: an argument structure which
is extracted from a conclusion which is in turn ex-
tracted from a case model which is in turn extrac-
ted from a generic domain model. Note that, in all
cases, each sub-component is generated by extract-
ing a relevant subset of some background theory to
generate a new theory (i.e. abduction). Return-
ing now to HT4, we note that this algorithm also
extracts sub-models from super-models. The ex-
tracted models are relevant to a particular task;
i.e. < IN ;OUT >.
We note that other researchers have recognised
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some similarities between di�erent KLB tasks.
Breuker is a researcher in the KLB community.
Also, Wielinga et. al. note that their description
of systematic diagnosis and monitoring share com-
mon features [84]. Finally, Tansley & Hayball [80]
note that:

� Localisation and causal tracing are basically
the same process (which they call system-
atic diagnosis), except the former uses part-of
knowledge while the latter uses causal know-
ledge. In terms of our framework, both would
execute over the same and-or graph, but the
user's interpretation of the edges would di�er.

� Heuristic classi�cation could be used for both
classi�cation and diagnosis since (says Tans-
ley & Hayball) diagnosis is the backwards pro-
cess to classi�cation.

� Scheduling, planning, and con�guration are
actually the same problem, divided on two di-
mensions (\ goal states known or not" and
\temporal factors considered or not").

.
However, with the exception of Breuker and

Clancey, the KLB community does not actively ex-
plore these similarities.

6.2 Abduction and KLA (SOAR)

Our approach has some similarities to the
KLA SOAR project [53, 55, 54, 73, 85]. We view
the state space traversal of SOAR as a directed
and-or graph which can be extended at runtime.
While an HT4 D vertex contains a single literal,
the vertices of the SOAR state space contain con-
junctions of literals.
We prefer our HT4 approach over SOAR for

three reasons:

1. HT4 knowledge bases can be validated
without additional architecture. In other ex-
pert systems approaches (e.g. SOAR), valid-
ation requires additional architecture.

2. HT4 is a less complicated architecture than
SOAR. SOAR is built on top of an intric-
ate forward-chaining rule-based system. HT4
uses a simpler graph-theoretic approach.

3. HT4 models abduction better than SOAR.
Experiments with adding abductive infer-
ence to SOAR relied on an interface to
an external abductive theorem prover. In

Steier's CYPRESS-SOAR/ RAINBOW sys-
tem, SOAR production rules modeled control
decisions, while the RAINBOW abductive in-
ference engine generated possible designs [79].
Given a vertex with N out edges (or, in SOAR-
speak, a state space with N associated oper-
ators), HT4 assesses the utility of each edge
using (potentially) a deferred global analysis.
SOAR must make its operator assessment at
the local level. SOAR's run-time selective gen-
eration of the and-or graph has e�ciency ad-
vantages since it culls unacceptable alternat-
ives as they are �rst encountered. Our ap-
proach has the potential to be slower, but the
explicit representation of all alternatives per-
mits allows for global assessment criteria (e.g.
our validation procedure described above).

6.3 Other Abductive Research

Descriptions of abduction date back to the "fourth-
�gure" of Aristotle [81]. In the modern era, abduc-
tion was described by Charles Sanders Pierce in the
last century as follows:

The surprising fact C is observed. But
if A were true, C would be a matter of
course. Hence, there is reason to suspect
that A is true [57, introduction].

Pople noted the connection between diagnosis
and abduction in 1973. Pople's diagnosis inference
process explores a �rst-order theory looking for hy-
potheses which, if assumed, could explain known
symptoms [65]. The connection between diagnosis
and abduction was con�rmed later by Reggia in
1985 [70] and other researchers since, particu-
larly in the �eld of model-based diagnosis (MBD).
For example, our distinction between consistency-
based diagnosis and set-covering diagnosis in Sec-
tion 4.8 came from the MBD literature [14].
By the late 1980s, many researchers had recog-

nised the applicability of abduction to a wide-range
of domains. The 1990 AAAI Spring Symposium on
Automated Abduction [57] lists the following do-
mains as applications of abduction: natural lan-
guage processing, learning, �nancial reasoning,
analogical reasoning, causal reasoning, probabil-
istic and qualitative reasoning, just to name a few.
Several basic AI algorithms proved to be funda-
mentally abductive in nature [6, 14, 40]. For ex-
ample:

� The ATMS (discussed in Section 6.4) is an in-
cremental abductive inference engine. When
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a problem solver makes a new conclusion,
this conclusion and the reasons for believ-
ing that conclusion are passed to the ATMS.
The ATMS updates its network of depend-
encies and sorts out the current conclusions
into maximally consistent subsets (which HT4
would call worlds). HT4 borrows the term
minimal environments from the ATMS re-
search (but shortens it to ENV).

� Bayesian reasoning can be viewed as abduc-
tion, but in a numeric paradigm [6]. For an
example of Bayesian abduction, see Poole [64].
This numeric Bayesian abductive paradigm
may not explictedly represent the multiple-
world assumption space of non-numeric ab-
ductive techniques such as the ATMS and
HT4. We have argued here that the direct ma-
nipulation of that assumption space is a useful
technique for a wide variety of KBS tasks.

Logic-based frameworks for abduction such as
Pople's are common in the literature (e.g. [13, 15,
22, 37, 62, 63, 65]). Our preferred framework uses
a graph-theoretic approach; i.e. inference is the se-
lection of some subset of edges from the network of
possible proof trees. We �nd that underneath e�-
cient theorem provers is some sort of graph repres-
entation. Hence, we have elected to work directly
at the graph-level. The logical school is more con-
cerned with understanding the complex semantics
of abduction rather than in the construction of
practical systems (counter examples: [22, 63]). Po-
ple himself moved away from a pure logic-based
approach in his later work [66] as has other "logical-
school" researchers (e.g. Poole [64]).

This \logical-school" typically adopts minimal-
ity as the sole criteria for assessing worlds (counter-
example: [59]). For example, Console and Tor-
asso [13] explicitly argue for minimality for altern-
ative assessment. Our view is that minimality is
pragmatically useful for reducing the time for the
inference. Hence, HT4 calculates a minimal crit-
ical assumption set AB. However, we have argued
in this article that not all BEST explanations are
minimal. Rather, a comprehensive knowledge-level
modeling framework can be developed assuming
customisable world assessment.

Abduction is an interesting framework in which
to explore non-standard logics [49, 63, 81]. Many
of the criticisms against AI (e.g. [2]) are really
criticisms of standard deductive logics where the
conclusions reached are context independent. We
view abduction as a more plausible model of human

reasoning since the conclusions made are context-
dependent on the T ASK at hand.
Various researchers note that abductive de�ni-

tions of "explanation" are philosophically problem-
atic. Charniak & Shimony comment that, prag-
matically, a logical framework for "explanation" is
a useful de�nition since:

: : : it ties something we know little about
(explanation) to something we as a com-
munity know quite a bit about (theorem
proving) [10].

However, abductive explanation blurs causal im-
plication and logical implication. Charniak & Mc-
Dermott [9] and Poole [60] caution against mix-
ing up these operators in a single knowledge base.
Many researchers acknowledge this as a research
area, but then quickly change the topic (e.g. [9,
p454], [13, p663],[6, p27], [40, p1061], [50]).

6.4 Default Logic and the ATMS

Our base controversial assumptions and worlds are
akin to ATMS labels [16, 17, 18, 27] and default lo-
gic extensions respectively [71]. However, we di�er
from ATMS/ default logic two ways:

1. HT4 worlds only contain relevant literals; i.e.
only those literals that exist on pathways
between inputs and outputs. This means that,
unlike default logic extensions, not all con-
sequences of a literal that are consistent with
that world are in that world. For example, if
the OUT set of our example did not include
eUp, then eUp would not have appeared in the
W1 or W2 of Figures 4 and 5.

2. A default logic extension must contain the
initial set of facts. An HT4 world contains
only some subset of the initial FACT S and
IN . HT4 is the search for some subset of the
given theory, which can use some subset of
the INputs to explain some subset of desired
OUT outs.

Note that HT4 is di�erent to the ATMS in an-
other way. HT4 does not separate a problem solver
into an inference engine and an assumption-based
truth maintenance system. Such a split may be
pragmatically useful for procedural inference en-
gines. However, if we try to specify the inner-
workings of a procedural reasoning system, we �nd
that we can model it declaratively by abduction
plus BEST (recall the discussion in section 5.1.4
on how to use BEST as a procedure to control
search space traversal).
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6.5 Vague Domains

One interesting property of abduction is that it can
perform all the above reasoning tasks in vague do-
mains which we have previously characterised [45]
as domains that are:

� Poorly measured: i.e. known data from
that domain is insu�cient to con�rm or deny
that some inferred state is valid. Inference
in poorly measured domains means making
guesses or assumptions. Mutually exclusive
assumptions must be managed in separate
worlds. HT4 implements this multiple-world
reasoning directly.

� Hypothetical: i.e. the domain lacks an au-
thoritative oracle that can declare knowledge
to be \right" or \wrong". Note that in a
well-measured domain, the authoritative or-
acle could be a database of measurements.
Since vague domains lack an authoritative or-
acle, theories about them may be widely in-
accurate. Modeling in vague domains there-
fore requires a validation engine. HT4 sup-
plies such a validation engine.

� Indeterminate: i.e. inferencing over a know-
ledge base could generate numerous, mutually
exclusive, outcomes. For example, recall Fig-
ure 2. In the case of both A and B going
UP, then we have two competing in
uences
on C and it is indeterminate whether C goes
UP, DOWN, or remains STEADY. Since the
results that can be inferred from the theory
are uncertain, it is indeterminate. The inde-
terminacy of the possible inferences requires
some non-monotonic reasoning module. HT4
models non-monotonic reasoning using mul-
tiple worlds.

In a review of the KBS domains we have studied
in detail since 1985, we found that all were vague
domains [45]. These domains were process control,
farm management, economic modeling, biochem-
ical interpretation, consumer lending, and model-
based diagnosis. Based on this review, we believe
that tools that can execute in vague domains are
widely applicable.
Easterbrook makes a similar, but more general,

point [21]. He �nds that most software problems
have con
icts since they usually contain:

� A thin spread of application domain know-
ledge (i.e. no de�nitive oracle).

� Fluctuating and con
icting requirements; e.g.
user groups with con
icting needs; con
icts
between stated constraints; con
icts between
perceived needs; con
icts between evaluations
of priorities.

� Breakdowns in communication and
co-ordination.

� Areas in which there are di�erent ways of
looking at things.

Easterbrook believes that it is arti�cial to re-
move these con
icts in software models.

This insistence that that expertise must
be consistent and rational imposes re-
strictions of the knowledge acquired. The
knowledge acquisition process becomes
not so much the modeling of the expert's
behaviour, but the synthesis of a domain
model which need not resemble any men-
tal model used by the expert [21, p264].

Easterbrook argues that software should expli-
citly model these con
icts since it is exactly this
con
icts that will be required to understand op-
posing positions. We agree. Tools such as HT4
which can explicitly represent con
icts are widely
applicable.

7 Conclusion

The core shared insight of Clancey and Breuker's
work is that theory subset extraction is the central
task of KBS inference. Our goal was the descrip-
tion of a minimal architecture necessary to perform
this process. Our proposed architecture is the HT4
abductive inference algorithm. In this approach,
expert knowledge is represented in the topology
of D and the BEST operators. We have shown
above how HT4 can be used for KBS veri�cation
and validation. If we implement expert systems
as abduction, then we can execute and evaluate
our knowledge bases. Further, HT4 can execute in
vague and con
icting domains (which we believe
occur very frequently). We have found that numer-
ous, seemingly di�erent, KLB tasks can be mapped
into this single inference procedure. Therefore we
believe that abduction in general (and HT4 in par-
ticular) is a useful framework for knowledge-level
modeling.
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