
LACE2: Better Privacy-Preserving Data Sharing

for Cross Project Defect Prediction

Fayola Peters∗, Tim Menzies† and Lucas Layman‡

∗Lero - The Irish Software Research Centre, University of Limerick, Ireland. Email: fayolapeters@gmail.com
†Computer Science, North Carolina State University, USA. Email: tim.menzies@gmail.com

‡Fraunhofer Center for Experimental SE, College Park, USA Email: llayman@fc-md.umd.edu

Abstract—Before a community can learn general principles, it
must share individual experiences. Data sharing is the funda-
mental step of cross project defect prediction, i.e. the process of
using data from one project to predict for defects in another.
Prior work on secure data sharing allowed data owners to share
their data on a single-party basis for defect prediction via data
minimization and obfuscation. However the studied method did
not consider that bigger data required the data owner to share
more of their data.

In this paper, we extend previous work with LACE2 which
reduces the amount of data shared by using multi-party data
sharing. Here data owners incrementally add data to a cache
passed among them and contribute “interesting” data that are
not similar to the current content of the cache. Also, before data
owner i passes the cache to data owner j, privacy is preserved
by applying obfuscation algorithms to hide project details. The
experiments of this paper show that (a) LACE2 is comparatively
less expensive than the single-party approach and (b) the multi-
party approach of LACE2 yields higher privacy than the prior
approach without damaging predictive efficacy (indeed, in some
cases, LACE2 leads to better defect predictors).

I. INTRODUCTION

When data are insufficient or non-existent for building

quality defect predictors, software engineers can use data from

other organizations or projects. This is called cross project

defect prediction (CPDP) [1], [2]. Acquiring data from other

sources is a non-trivial task when data owners are concerned

about confidentiality. In practice, extracting project data from

organizations is often difficult due to the business sensitivity

associated with the data. For example, at a keynote address

at ESEM’11, Elaine Weyuker doubted that she will ever

be able to release the AT&T data she used to build defect

predictors [3]. Due to similar privacy concerns, we were

only able to add seven records from two years of work to

our NASA-wide software cost metrics repository [4]. In a

personal communication, Barry Boehm stated that he was able

to publish less than 200 cost estimation records even after 30

years of COCOMO effort.

To enable sharing, we must assure confidentiality. In our

view, confidentiality is the next grand challenge for CPDP in

software engineering. In previous work [5], [6], we allowed

data owners to generate minimized and obfuscated versions

of their original data. Our MORPH algorithm [5] reflects on

the boundary between an instance and its nearest instance

of another class, and MORPH’s restricted mutation policy

never pushes an instance across that boundary. MORPH can

be usefully combined with the CLIFF data minimization algo-

rithm [6]. CLIFF is an instance selector that returns a subset of

instances that best predict for the target class. Previously we

reported that this combination of CLIFF&MORPH resulted

in 7
10 defect data sets studied retaining high privacy scores,

while remaining useful for CPDP [6]. This is a startling result

since research by Grechanik et al. [7] and Brickell et al. [8]

showed that standard privacy methods increase privacy while

decreasing data mining efficacy.

While useful, CLIFF&MORPH only considered a single-

party scenario where each data owner privatized their data

individually without considering privatized data from others.

This resulted in privatized data that were directly proportional

in size (number of instances) to the original data. Therefore,

in a case where the size of the original data is small enough,

any minimization might be meaningless, but if the size of

the original data is large, minimization may not be enough to

matter in practice.

In this paper we mitigate this issue with LeaF for multi-

party data sharing. LeaF is based on the leader follower

algorithm for clustering data (explained in §III-D2). It allows

a multi-party scenario where data owners can incrementally

add “interesting” data to a private cache passed among them

based on the content already in the private cache. This means

that the size of the privatized data is no longer dependent

on the size of the original data. Instead, it will depend on

the (dis)similarity of the data among different data owners,

i.e. the more similar the data, the less each data owner will

contribute to the private cache. We implement multi-party data

sharing as an extension of CLIFF&MORPH and introduce the

framework called LACE which is a Large-scale Assurance of

Confidentiality Environment that allow both the single-party

and multi-party methods to be used by data owners.

This paper proposes and evaluates LACE2, a multi-party

privacy policy based on the following scenario. Consider the

problem of l parties (data owners) P1...Pl, each with local data,

xi. They want to work together securely to create a private

cache containing pooled, minimized, and obfuscated data from

all parties involved. Each data owner Pi determines what data

to add to the private cache based on what others have added

previously. The final private cache can then be published in a

public data repository such as PROMISE [9].

Note, in the rest of this paper, when referring to

CLIFF&MORPH which uses a single-party privacy policy, we

denote this as LACE1. Also, when the term LACE is used, we

are referring to both LACE1 and LACE2.

The specific contributions of this paper and LACE2 are:

• Private data remains with data owner inside firewalls.

• All the algorithms are run behind firewalls by data owners.

Hence, in LACE, there is no need for a central server or

some third party privatization service.

• Most data are never shared. LACE prunes away most of

the data while retaining “interesting” data points.

• The shared data are obfuscated such that queries to that

data return different values than in the raw data.

• Obfuscation of the data does not change the classifications

of the training data. That is, LACE privatizes data without

damaging data mining efficacy.

LACE2 has several benefits over LACE1 and multi-party

sharing [10]: First, because of LeaF, LACE2 releases less

overall data (as low as 3%-6%). Second, LACE2 overcomes

known issues with multi-party sharing (high network traffic

and high computational costs) as it only requires the private

cache to visit a data owner once.

We privatized seven proprietary data sets with over 17,000

instances using LACE2 and used the result to predict defects

for 10 open-source data sets. With the wide range of parameter

values involved with our privacy algorithms, we run the

experiment R=10 times and report the median results. The

experiments and results address three research questions:

• RQ1: Does LACE2 offer more privacy than LACE1? Our

definition of “more privacy” is shown in §III-E.

• RQ2: Does LACE2 offer more useful defect predictors

than LACE1? To measure usefulness, we compare the

performance of defect predictors built with local data

vs. single-party privatized data (LACE1) vs. multi-party

privatized data (LACE2). Results are shown in §V-B.

• RQ3: Are the systems costs of LACE2 (runtime and

memory) worse than LACE1? LACE2 does more work

than LACE1 (specifically, it uses an instance-based nearest

neighbor method to check the data should be added to

the private cache). It is therefore wise to check if LACE2

runs too slowly and outputs to many instances to be

practical (§V-C).

II. BACKGROUND

LACE1 and LACE2 mitigate for sensitive attribute disclo-

sure and has been tested on cross project defect prediction.

The intuition behind LACE2 is based on software code reuse.

According to a study done by Selby [11], in a set of programs,

32% were comprised of reused code (not including libraries).

We conjecture that data will be similar over multiple projects

allowing LACE2 to reduce the amount of data each data owner

contributes by adding instances that are not similar to those

in the private cache. The LACE2 innovation is that it supports

secure multi-party computation. The goal of this novel method

is to mitigate the disadvantage of LACE1 where the number

of instances each data owner contributes to the private cache is

directly proportional to the number of instances in the original

data set. All italicized terms are defined in this section.

A. Cross Project Defect Prediction

The usefulness of LACEd data is measured via its utility for

cross project defect prediction. CPDP is useful because local

data is not always available to many software companies for

defect prediction [1]. According to Zimmermann et al. [1] is

due to 1) the companies may be too small and 2) the product

being in its first release and so there is no past data. Kitchen-

ham et al. [12] who studied cross versus within-company cost

estimation saw problems with relying on local data: (1) the

time required to collect enough data on past projects from a

single company may be prohibitive; (2) collecting local data

may take so long that technologies used by the company would

have changed and so older projects may no longer represent

current practices.

With the use of better selection tools for training data,

researchers have found it possible to predict defects for

software projects with insufficient data by using data from

other projects [1], [2], [13]–[18]. However although the field

of CPDP is useful and active, its main component is data

sharing which brings up privacy concerns.

B. Privacy-Preserving Data Sharing

To understand sensitive attribute disclosure, we first offer

the following definitions. Data consists of a set of classes

which we refer to as targets T={t1, t2, ..., t|T |}. Each target t ∈
T is a tuple of attribute values representing the individual target

class. Each attribute falls into one or more of the following

categories:

• Direct-identifier – the attribute explicitly identifies an indi-

vidual or project (e.g. social security number or filename).

• Quasi-identifier (QID) – can be used to infer a target’s

identity alone or in combination with other attributes.

• Sensitive Attribute (S) – an attribute we do not want

attackers (adversaries) to associate with a target, t .

• Dependent Attribute – used when evaluating the utility of

data via classification. In this work, utility is measured via

CPDP.

Privacy is threatened by unwanted disclosure of Direct-

identifiers, Quasi-identifiers, and Sensitive Attributes. Pri-

vacy threats are classified as 1) identity disclosure or re-

identification, 2) membership disclosure, and 3) sensitive at-

tribute disclosure [8], [19], [20].

When protecting a personal data from privacy threats, the

goal is to prevent re-identification. Re-identification occurs

when an attacker with external information such as a voters

list, can re-identify an individual from data that has been

stripped of personally identifiable information such as a so-

cial security number. Prominent examples of this are the

re-identification of William Weld from released health-care

data [21] and Thelma Arnold from the AOL search data [22].

Membership disclosure is another privacy threat that focuses

on protecting a person’s micro data. It can happen if an

attacker is able to confirm that the target’s data is contained

in a particular data set. For example, if the data set contains

information only on HIV patients, then the attacker can infer

that the target is HIV-positive [20].

Sensitive attribute disclosure occurs when a target is asso-

ciated with information about their sensitive attributes, such

as software code complexity. For example, in the case of

defect data, one attribute that might want to be kept hidden

are the lines of code (loc) associated with the shared data.

It is well documented that loc is highly correlated to devel-

opment effort [23] and development effort is something most

organizations wish to keep private (since it effects how many

billable hours they can charge their clients).

In this paper, we evaluate LACE1 and LACE2 against the

third privacy threat, sensitive attribute disclosure. Evaluation of

LACE1 and LACE2 against re-identification and membership

disclosure is left to future work. Hence neither re-identification

nor membership disclosure are explored further in this work.

When a data owner releases a privatized version of their

data, an attacker tries to associate a specific target to a sensitive

attribute value. For instance, Table I(b) shows an equal fre-

quency binned version of Table I(a). Equal frequency binning

divides the range of possible values into n bins or sub-ranges,

each of which holds the same number of attribute values. If

duplicate values are placed in different bins, boundaries of

every pair of neighboring bins are adjusted so that duplicate

values belong to one bin only [24]. The result is Table I(b).

Table I(c) is a minimized (reduced to three instances) and

obfuscated (in instance #8, wmc=(6-14] changed to wmc=[3-

6]) version of Table I(b). Column headers are the C-K object

oriented metrics used in the data sets studied in this paper.

For an explanation of those metrics, see Table II. We assume

that the sensitive attribute is loc, the dependent attribute is bug

and all other attributes are quasi-identifiers except for the first

column which we consider to be a direct identifier.

Given Table I(b), if an attacker knows that the wmc value of

their target is in the range [3-6], then the attacker will know

with 100% certainty that the sensitive attribute value for loc

is in the range [58-136]. With LACE we seek to reduce the

attackers’ certainty with data minimization and obfuscation

(of quasi-identifiers) in order to disassociate quasi-identifier

values from sensitive attribute values. Therefore if the attacker

instead is given Table I(c) which shows a minimized and

obfuscated version of Table I(b), then the attacker with the

same knowledge of wmc=[3-6] will only be 50% certain about

the loc range of values associated with the target.

C. Secure Multi-party Computation

LACE2 is based on the success and failures of prior work on

multi-party computation. As explained by Vaidya et al. [10],

the goal of perfectly secure multi-party computation is that

nothing is revealed. They offer a simple example of such a

computation. Suppose we want the average age of everyone

attending the ICSE conference. First, we generate a large

random number R and pass it to a random attendee. The

attendee adds their age and passes the sum to another attendee

(selected at random). This repeats till all attendees have been

sampled at which point the sum returns to the origin. After

subtracting R, we have the sum of the ages from which we

can find the mean.

TABLE I
AN EXAMPLE OF PRESERVING PRIVACY OF DEFECT DATA VIA

MINIMIZATION AND OBFUSCATION.

(a) Partial ant-1.3 Defect Data
wmc dit noc cbo rfc lcom ca ce loc bug

1 11 4 2 14 42 29 2 12 395 0
2 14 1 1 8 32 49 4 4 297 1
3 3 2 0 1 9 0 0 1 58 0
4 12 3 0 12 37 32 0 12 310 0
5 6 3 0 4 21 1 0 4 136 0
6 5 1 5 12 11 8 11 1 59 0
7 4 2 0 3 16 0 0 3 59 0
8 14 1 0 24 63 63 20 20 822 1

(b) ant-1.3 After Equal Frequency Binning
wmc dit noc cbo rfc lcom ca ce loc bug

1 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] (2-20] (4-20] (136-822] 0
2 (6-14] [1-4] [0-5] [1-8] (21-63] (8-63] (2-20] [1-4] (136-822] 1
3 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
4 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] 0 (4-20] (136-822] 0
5 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
6 [3-6] [1-4] [0-5] (8-24] [9-21] [0-8] (2-20] [1-4] [58-136] 0
7 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
8 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] (2-20] (4-20] (136-822] 1

(c) ant-1.3 After Minimization and Obfuscation
wmc dit noc cbo rfc lcom ca ce loc bug

1 (6-14] [1-4] [0-5] (8-24] (21-63] (8-63] (2-20] (4-20] (136-822] 0
3 [3-6] [1-4] [0-5] [1-8] [9-21] [0-8] 0 [1-4] [58-136] 0
8 [3-6] [1-4] [0-5] (8-24] (21-63] (8-63] (2-20] (4-20] (136-822] 1

The benefits of this protocol are that, if R is kept private,

then no single participant can “decode” the passed value to

find the sum of the ages. Also, if the ordering of the sampled

attendees is also kept private and randomized, then no pair of

attendees a, c can compare their numbers to determine the age

of the attendee b who was sampled between a and c.

Vaidya et al. discussed an experiment with a distributed data

miner (based on C4.5) that used a variant of the above multi-

party computation whenever it searched data from different

organizations. They declared that experiment a failure for two

reasons. First, the network overhead of that approach was

prohibitive. Second, this approach conducted so many queries

across different sites that it was possible for pairs of sites to

collude to “decode” the passed values.

Our analysis of the Vaidya et al. experiment suggests that

multiple micro-queries of a distributed data source lead to

poor privacy and performance. However, a single-pass random

sampling approach mitigates against collusion and reduces

the network traffic associated with the query. LACE2 is such

a single-pass randomized query whose outcome is a private

cache containing exemplars from each site.

III. LACE DESIGN AND OPERATION

A. Assumptions for LACE2

When implementing LACE2, we make the following as-

sumptions. (i) Since data is pooled into a private cache for

defect prediction, each data owner must provide data with the

same features or attributes. (ii) Data involved in LACE2 are

not extreme. For example, consider a case where Microsoft

Windows and several small “startups” contribute to a private

cache. Even with the random perturbation in MORPH (de-

scribed in §III-D3), it will be obvious which defect data came

from Windows vs. all of the others because Windows will have

attributes orders of magnitude greater than anyone else.

B. Top-Level Loop of LACE

Fig. 1 gives an overview of how LACE is executed at each

data owner’s site. Each data owner takes part in the process

once. The shaded box where LeaF is applied with CLIFFed

data and the current private cache, highlights the difference

between LACE1 and LACE2. LACE1 excludes the use of

LeaF (§III-D2) and only adds CLIFFed&MORPHed data to

the private cache. LACE2 uses LeaF so that data owners can

use the current content in the private cache to determine what

data to add to the private cache. The high-level steps involving

multiple data owners are explained as follows with the process

of Fig. 1 reflected from Steps 2-6:

1) The initiator (data owner) is chosen at random.

2) Data owner applies CLIFF to identify the subset of data

that best represents the target classes. Only the data se-

lected by CLIFF are used in LACE.

3) If the data owners decided to use LACE1 then go to

the next step, otherwise, with LACE2, LeaF is applied to

further prune the CLIFFed data and facilitate collaboration

among data owners.

4) The results are then obfuscated with MORPH (§III-D3),

and privacy is measured (§III-E).

5) Steps 2-4 are repeated until a user defined privacy criterion

is met. Once this is achieved, the MORPHed data is added

to the private cache.

6) The private cache is sent to the next randomly chosen site

(data owner), where they execute Step 2. As in Step 3, if

LACE1 is used then move on to Step 4, otherwise, with

LACE2 test each instance of their CLIFFed data using

LeaF with the private cache. The test involves each instance

finding its nearest exemplar in the private cache. If the

instance and exemplar are a certain distance away, then

the new instance is MORPHed and added to the cache.

7) The private cache moves on to the next random data owner

and Steps 2-6 are repeated.

8) The protocol is complete when all data owners involved

have had a chance to contribute to the private cache. This

final private cache can be added to a public data repository.

The rest of this section offers further details on LACE

guided by the main components in Fig. 1.

C. Inputs for LACE

LACE accepts three inputs provided by the data owner:

data, privacy criteria based on the privacy threat of sensitive

attribute disclosure, and the private cache which can be empty

or contain privatized data from other data owners.

D. Privacy Algorithms in LACE

LACE uses the CLIFF algorithm to remove uninformative

instances and the MORPH algorithm to obfuscate the remain-

ing instances. On top of that, the LACE2 innovation is to apply

the LeaF “leader-follower” algorithm to add more intelligence

to what instances are selected for the private cache.

Fig. 1. Overview of LACE for a single data owner.

1) CLIFF for Data Reduction: CLIFF [6] assumes that

tables of training data can be divided into classes. For example,

for a table of defect data containing code metrics, different

rows might be labeled accordingly (defective or not defective).

CLIFF executes as follows:

• For each column of data, find the power of each attribute

sub-range; i.e., how frequently that sub-range appears in

one class more than any other. We then find the product

of the powers for each row then,

• Remove the less powerful rows of each class, keeping 20%

of the most powerful rows. We use 20% based on the

results from previous work where selecting 20% of the top

ranked rows provided a relatively better balance between

privacy and utility.

The result is a reduced data set with fewer rows.

Finding the power of each attribute sub-range is based on

the BORE (best or rest) [25] algorithm. To apply BORE, first

we assume that the target class is divided into one class as

first and the other classes as rest. This makes it easy to find

the attribute values that have a high probability of belonging

to the current first class using Bayes’ theorem. The theorem

uses evidence E and a prior probability P(H) for hypothesis

H ∈ {first, rest}, to calculate a likelihood (hereafter, like) of

the evidence selecting for one class:

like(H|E) = P (E|H)× P (H).

This calculation is then normalized to create probabilities:

P (first|E) =
like(first|E)

like(first|E) + like(rest|E)
(1)

Jalali et al. [25] found that Equation 1 was a poor ranking

heuristic for low frequency evidence. To alleviate this problem

the support measure was introduced. Note that like(first|E) is

also a measure of support since it is maximal when a value

occurs all the time in every example of one class. Hence,

adding the support term is just (Equation 2):

P (first|E) ∗ support(first|E) =
like(first|E)2

like(first|E) + like(rest|E)
(2)

2) LeaF for Data Selection: LeaF is based on the leader-

follower algorithm [26]. It is an online, incremental technique

for clustering data. The cluster centers are the “leaders” and

all other instances are the “followers”. For this work we are

only interested in the leaders. The basic algorithm works as

follows: First initialize cluster centers, then for each instance

in the data, find its nearest center. If the distance to the center

is less than a user defined distance, then update the cluster.

Otherwise, create a new cluster with the instance as the center.

To define distance, we use the standard Euclidean measure

recommended for instance-based reasoning by Aha et al. [27]:

dist(x, y) =

√

∑

i

(xi − yi)2 (3)

where xi and yi are normalized values between 0 and 1.

LeaF is applied to each instance selected by CLIFF from

the data owner’s data set to determine if it should be included

in the private cache. For our work, we adapt LeaF as follows.

First, the cluster centers are never updated to create centroids

(this saves some time in the algorithm). Second, instead of

a user defined distance, we randomly select 100 instances

from the initiator and find the distances from their nearest

neighbor with a different class label. We use the median of

these distances d, to determine if data from a data owner

should be included in the private cache (new data is added

to the cache if it falls outside of d). Third, prior to a new

instance being added to the cache, it is first MORPHed using

the method described in the next section.

3) MORPH for Data Obfuscation: MORPH’s role in the

LACE process is to obfuscate the output from either CLIFF

(if LACE1 is used) or LeaF (if LACE2 is used) prior to the

output’s addition to the private cache. MORPH is an instance

mutator used as a privacy algorithm [5], [6]. It changes

the numeric attribute values of each row by replacing these

original values with MORPHed values.

MORPHed instances are created by applying Equation 4 to

each attribute value of the instance. MORPH will not change

an instance such that it moves across the boundary between the

original instance and instances of another class. This boundary

is determined by r in Equation 4. A small r value means the

boundary is closer to the original row, while a large r value

means the boundary is farther away from the original row.

yi = xi ± (xi − zi) ∗ r (4)

Let x ∈ data be the original instance to be changed, y the

resulting MORPHed instance and z ∈ data the nearest unlike

neighbor of x, i.e. whose class label is different from x’s

class label. Distance is calculated using the Euclidean distance.

Previously, in our work on CLIFF&MORPH [6] the random

number r was calculated with the property:

α ≤ r ≤ β

where α = 0.15 and β = 0.35. We use this range of

values based on results of previous work [6] which produced

privatized data candidates with high privacy and accurate

defect prediction.

E. Measuring Privacy

To measure privacy, we use the Increased Privacy Ratio

(IPR) used in our previous work [6]. Informally, it can be

defined as follows. Suppose the same query is posed to a

database, before and after some algorithm has tried to privatize

that data. The privacy ratio is the percent of data found before

that was also found afterwards:

• If that ratio is 100% then this would be an example of a

very poor privacy algorithm.

• If, on the other hand, none of the data found before was

found in after, then this would be an example of a very

good privacy algorithm.

We report the IPR as the percent of data not found, therefore

a poor privacy algorithm will have IPRs closer to 0% while a

good privacy algorithm will have IPRs closer to 100%.

It should be noted that in CPDP, if the goal of the attacker is

to associate a target to the number of defects then no privacy

algorithm can defend against this except to generalize the

values of defects for each target as done in this work. Here

any number of defects are replaced with the value one.

To formally define IPR, we assume that attackers have

access to privatized data (in this case, exemplars prior to

joining the private cache), denoted as (T ′) of an original data

set (T), and some background knowledge of non-sensitive

quasi-identifier values for a specific target in T . We refer to

the background knowledge as a query. To generate queries we

use a query generator to generate queries based on what the

attacker may know about a target in the original data set.

To maintain some “realism” to the attacks, a selected

sensitive attribute(s) and the class attribute are not used as

part of query generation; the attacker is trying to discover this

information but does not know it beforehand. Here we are

assuming that the only information an attacker could have is

information about the non-sensitive QIDs in the data set.

To illustrate a query generator, we use an example defect

data set shown in Table I(a) and Table I(b). Next, to create a

query, we proceed as follows. Our inputs are a set of attributes

and a query size measured as the number of attribute sub-

range pairs. For this study, we use a query size of 1 since

previous work [6] showed that even with an increase in query

size, IPRs were comparable. From those inputs, we randomly

choose an instance from the data. For this example we use row

1 in Table I(b), then randomly select an attribute from A, e.g.

wmc = (6-14]. In the end the query we generate is, wmc = (6-

14]. We continue this process until we have used all instances.

In previous work [6] we also used 1000 unique queries as a

stopping criterion because of query sizes 2 and 4. We stopped

at 1000 because it would not be practical to generate and test

every possible query of size 2 and 4. However, with a query

size of 1 this stopping criterion is unnecessary because with

equal frequency binning set at 10 bins, each attribute in the

data sets used in this work, will have at most 10 sub-ranges and

with the number of quasi-identifiers at 19, the most number

of queries generated are 190.

Each query must also satisfy the following sanity checks:

• They must not be the same as another query.

• They must return at least one instance from the original

data set.

• They must not include attribute value pairs from either the

designated sensitive attribute or the class attribute.

When all the queries are generated the next steps are as

follows: For each query, q ∈ Q = {q1, ..., q|Q|}, G∗
i is a

group of rows from any data set which matches qi. Gi is

the group from the original data set and G′
i is the group from

the private data candidate which matches qi. Next, for every

sensitive attribute sub-range in the set (s) = {s1, ..., s|S|}, the

most common sensitive attribute value is smax(G
∗
i).

Now, we define a breach of privacy as follows:

Breach(S,G∗
i) =

{

1, if smax(Gi) = smax(G
′
i),

0, otherwise.

Therefore, the privacy level of the exemplars is:

P1 = 100× IPR(T ∗) = 1−
1

|Q|

|Q|
∑

i=0

Breach(S,G∗
i). (5)

IPR(T ∗) has some similarity to Aacc of Brickell and

Shamtikov [8], where IPR(T ∗) measures the adversary’s

ability to cause breaches after observing the exemplars T ′

compared to a baseline of the original data set T . To be more

precise, IPR(T ∗) measures the percent of total queries that

did not cause a Breach.

F. Upper and Lower Bounds on IPR

When used in conjunction with instance selection algo-

rithms like LeaF and CLIFF, Equation 5 is a lower bound

on privacy. Recall that:

• From with N projects, CLIFF and LeaF discards X rows;

• Equation 5 is applied to the remaining N −X projects.

Since data from the X discarded projects is never shared, it

is fully private. Therefore, an upper bound on privacy is:

P2 = X/N + (N −X)/N ∗ P1/100 (6)

where P1 comes from Equation 5. For example, CLIFF and

LeaF typically discard 80% of the data and, on the remaining

data, we achieve an IPR of 80%. The resulting increased

privacy is hence 0.8 + 0.2 ∗ 0.8 = 96%.

Note that P2 is an upper bound on privacy since it is

possible that the patterns in the discarded data might repeat in

the cached data. That said, given a large enough community

sharing their data, there would always be some doubts about

which members of the community had the exact values found

in particular query.

In Table V, we take care to report the lower and upper

bound (P1, P2) on all our privacy results.

G. Output

Once data have been MOPRHed and meet the data owner’s

criterion of high IPR, the data are added to the private cache

and either sent to another data owner or made public for

CPDP. When applying the data owner’s IPR criterion, we use

the conservative bound of Equation 5 rather than the more

optimistic Equation 6.

IV. EXPERIMENTAL SETUP

A. Experimental Design

These experiments are designed to address the three re-

search questions from the introduction (§I).

First, to determine if LACE2 offers more privacy than

LACE1 (RQ1), we calculate the IPRs for the privatized data

produced by each method (explained in §III-E) prior to being

added to the private cache. In practice, the data owner may

choose to lower or raise their privacy criterion. This means

that no matter how many data owners are involved in LACE2,

the IPR will always be adequate for the data owner. We

define adequate to be the equivalent of a data owners’ privacy

criterion. In our experiments we use an arbitrary privacy

criterion of 65% therefore adequate ≥ 65%. Results are

shown in Table V.

Second, to determine if LACE2 offers better defect pre-

dictors than LACE1 (RQ2), we baseline our work with a

cross-validation experiment on local data. Cross-validation is

a standard evaluation approach in Machine Learning where an

experiment is repeated n times on m random subsamples of

data. In other words, n-times, mall-mi is treated as the training

set and mall-training set, is the test set. We use a 10-way cross-

validation where n is 1 and m is 10 and report on the median

performance (Section IV-D shows how this is measured).

Last, to determine if LACE2 consumes more processing and

storage resources than LACE1 (RQ3), we measure the time

(seconds) it takes for each to produce a private cache and also

measure the size of the cache. Results are shown in Table VIII.

B. Data

The evaluation was conducted using 17 of the Jureczko

static code defect data sets [28], [29]. Table II describes the

attributes of these projects and Table III lists the names of the

data sets. Each instance in these data sets represents a source

code class and consists of two parts: 20 independent static

code attributes and the dependent attribute labeled “defects”

indicating the number of defects in the class. For our work, we

refer to each class as an instance. Additionally, instances with

no defects are labeled as 0, and instances with one or more

defects are labeled as 1. Table III also indicates that the first

10 data sets are from open-source projects while the remaining

seven are from proprietary projects.

C. Data Mining Algorithms

To assess the performance implications of applying our

privacy algorithms, we used a k-Nearest Neighbor (k-NN) al-

gorithm. Cover and Hart [30] describes k-NN as a simple non-

parametric decision procedure which classifies an unknown

instance in the category of its nearest neighbor. k-NN is one of

the simplest defect predictors that can be used. It can therefore

be used as a baseline for more complicated methods. A k-NN

algorithm generates an estimate for a test instance by finding

the mean of the k nearest neighbors in the training data. To

define distance in this context, we use Equation 3.

TABLE II
THE C-K METRICS OF THE DATA SETS USED IN THIS WORK (TABLE III). THE LAST ROW IS THE DEPENDENT VARIABLE. JURECZKO ET AL. [28] PROVIDE

MORE INFORMATION ON THESE METRICS.

Attributes Description

amc average method complexity: average method size as measured by the number of Java binary codes

avg cc average McCabe: average McCabe’s cyclomatic complexity seen in class

ca afferent coupling: the number of classes the access the members of the specified class

cam cohesion amongst classes: summation of number of different types of method parameters in every method divided by a multiplication of number of

different method parameter types in whole class and number of methods

cbm coupling between methods: total number of new/redefined methods to which all the inherited methods are coupled

cbo coupling between objects: increased when the methods of one class access services of another

ce efferent couplings: the number of classes whose members are access by the specified class

dam data access metric: ratio of the number of private (protected) class attributes to the total number of class attributes

dit depth of inheritance tree: the level on which the class is positioned in the inheritance tree (dit(root) = 0)

ic inheritance coupling: number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)

lcom lack of cohesion in methods: number of pairs of methods that do not share a reference to an instance variable

locm3 another lack of cohesion measure: if m, a are the number of methods, attributes in a class number and µ(a) is the number of methods

accessing an attribute, then lcom3 = ((1

a

∑

a
j
µ(aj)) − m)/(1 − m)

loc lines of code: number of lines of binary code

max cc maximum McCabe: maximum McCabe’s cyclomatic complexity for class

mfa measure of function abstraction: number of methods inherited by a class plus number of methods accessible by member methods of the class

moa measure of aggregation: count of the number of data declarations (class fields) whose types are user defined classes

noc number of children: measures the number of immediate descendants of the class.

npm number of public methods: counts all the methods in a class that are declared as public. The metric is known also as Class Interface Size (CIS)

rfc response for a class: sum of the number of methods, and the number of methods invoked within a class’s method bodies

wmc weighted methods per class: the number of methods in the class (assuming unity weights for all methods).

defects number of defects per class, seen in post-release bug-tracking systems. Converted to the boolean false if no defects, otherwise true.

TABLE III
OBJECTIVE DATA SETS FOR OPEN-SOURCE AND PROPRIETARY PROJECT

DATA.

Defect Data Type # Instances # Defects % Defects

ant-1.7 open-source 1066 166 15.6
camel-1.6 open-source 1252 188 15.0
ivy-2.0 open-source 477 40 8.4
jEdit-4.1 open-source 644 79 12.3
lucene-2.4 open-source 536 203 37.9
poi-3.0 open-source 531 281 52.9
synapse-1.2 open-source 269 86 32.0
velocity-1.6 open-source 261 78 29.9
xalan-2.6 open-source 1170 411 35.1
xerces-1.3 open-source 545 69 12.7

prop1-ver192 proprietary 3692 85 2.3
prop2-ver276 proprietary 2472 334 13.5
prop3-ver318 proprietary 2440 365 15.0
prop4-ver362 proprietary 2865 213 7.4
prop5-ver185 proprietary 3260 268 8.2
prop42-ver454 proprietary 295 13 4.4
prop43-ver512 proprietary 2265 134 5.9

Note that, in our initial experiments, we used Naive

Bayes [31], Neural Networks [32] and Support Vector Ma-

chines [33] but found that these learners generated unaccept-

ably high false alarm rates (median values of 50% or higher).

Hence, in this work, in addition to using k-NN as a classifier

it is also used for relevancy filtering.

In relevancy filtering [2], [15], [18], only the training data

nearest to the test data is used to learn predictive models. The

filter applies k=10-NN to each member of LACE2’s cache to

build such a “nearest neighbor” training set. However instead

of using k=10, we tune k using the “Best(K)” procedure used

by Kocaguneli et al. [34] to determine the best for each test

set. For this study, we used k=1-NN for our relevancy filtering.

The results of relevancy filtering are then passed to noise

filtering to remove outliers. For this study, we used CLIFF to

for noise filtering. Note that we also experimented with using

only one of relevancy or noise filtering but those results had

unacceptably high false alarm rates.

D. Performance Evaluation

We assess our privacy algorithms using (1) the IPR pri-

vacy measure (described above) and (2) the g-measure that

summaries the performance measures of Table IV. TP, TN,

FP and FN are true positive, true negative, false positive

and false negative respectively. Probability of detection or

pd is equal to how much of the target (defective instances)

are found. The higher the pd, the fewer the false negative

results. The probability of false alarm or pf measures how

many of the instances that triggered the detector actually did

not contain the target (defects) concept. Like pd, the highest

pf is 100% however its optimal result is 0%. The g-measure

is harmonic mean of pd and 100-pf). The 100-pf represents

value is known as specificity (not predicting instances without

defects as defective. Specificity is used together with pd to

form the G-mean2 measure seen in Jiang et al. [35].

Measures such as accuracy, precision, and f-measure are

not shown in our experimental results since they are poor

indicators of performance for data where the target class is

rare (in our case, the defective instances). This is based on

a study done by Menzies et al. [36] which shows that when

data sets contain a low percentage of defects, precision can be

unstable. If we look at the data sets in Table III, we see that

defects are rare in most cases.

V. EXPERIMENTAL RESULTS

We organize our results around the three research questions

in the introduction (§I).

A. RQ1: Does LACE2 offer more privacy than LACE1?

Table V displays the median lower and upper bound results

of IPRs of the data submitted to the private cache by each data

TABLE IV

MEASURES USED IN SOFTWARE DEFECT PREDICTION.

Actual

yes no

Predicted
yes TP FP

no FN TN

pd TP
TP+FN

pf FP
FP+TN

g-measure
2∗pd∗(100−pf)
pd+(100−pf)

TABLE V
MEDIAN IPRS FOR PROPRIETARY PROJECTS AFTER 10 RUNS.

CALCULATED USING EQUATION 5 AND EQUATION 6.

LACE1 LACE2

Data lower upper lower upper

prop42-ver454 76.1 95.5 78.8 98.7
prop43-ver512 72.2 95.7 84.4 99.4
prop3-ver318 76.6 96.3 87.5 99.4
prop2-ver276 75.7 96.3 84.2 99.4
prop4-ver362 76.0 96.3 85.0 99.3
prop5-ver185 66.9 94.9 86.6 99.6
prop1-ver192 73.0 96.1 77.0 98.7

owner. The medians are calculated after 10 experimental runs

for LACE1 and LACE2. Looking at the minimum lower bound

values, we see that for LACE1 none of these minimum IPRs

are greater than or equal to the minimum IPRs of LACE2.

We find that with LACE1 results range from 66.9% to 76.6%,

while LACE2 minimum IPRs range from 77% to 87.5%.

Looking at the maximum upper bound values, we see LACE2

topping 99% in 5
7 of these runs. Hence, we say:

Overall, LACE2 provides more privacy than

LACE1.

Recall that we set an IPR as adequate if it was ≥ 65%, so that

if any data owner has an IPR less the adequate they can run

LACE again. However if the adequate measure is not reached,

we hypothesize that for these cases the data lacks diversity

and so any subset of the data are similar to all the data. For

these rare occurrences, data owners can choose not to add their

exemplars to the private cache. In future work we will test the

utility of not adding these exemplars.

B. RQ2: Does LACE2 offer better defect predictors than

LACE1?

Previous work with LACE1 [6] did not consider relevance

filtering nor noise reduction of its privatized data. In this work

with LACE2 we added these elements for improved defect

predictors. Table VI shows the median pd, pf, and g-measure

values seen in three treatments:

1) Local: Running a 10-way cross-validation (§IV-A) on each

open-source data set (Table III);

2) LACE1: Training on the private cache resulting from

LACE1;

3) LACE2: Training on the private cache resulting from

LACE2.

TABLE VI
K=1-NN: RESULTS SHOWN ARE THE PDS, PFS AND G-MEASURES.

data k=1-NN local LACE1 LACE2

ant-1.7 pd 44.6 69.9 70.8
pf 8.4 34.3 36.8
g-measure 60.0 67.6 64.9

camel-1.6 pd 29.3 53.2 49.5
pf 11.2 28.2 37.6
g-measure 44.1 61.2 50.0

ivy-2.0 pd 32.5 75.0 85.0
pf 6.9 31.9 46.3
g-measure 48.2 71.8 64.9

jEdit-4.1 pd 40.5 72.2 63.3
pf 5.7 23.4 41.7
g-measure 56.7 72.7 58.2

lucene-2.4 pd 62.1 48.5 43.8
pf 16.2 24.0 31.1
g-measure 71.3 58.9 53.1

poi-3.0 pd 81.9 42.9 57.1
pf 23.6 16.4 23.8
g-measure 79.1 57.0 63.9

synapse-1.2 pd 61.6 60.5 75.0
pf 21.2 40.2 55.7
g-measure 69.1 59.6 54.0

velocity-1.6.1 pd 59.0 45.5 50.6
pf 19.1 22.7 30.3
g-measure 68.2 57.0 58.5

xalan-2.6 pd 66.2 48.2 48.4
pf 16.2 28.1 27.3
g-measure 74.0 57.6 56.7

xerces-1.3 pd 43.5 60.9 58.7
pf 8.0 27.1 33.7
g-measure 59.1 65.5 59.1

TABLE VII
MANN WHITNEY RESULTS (95% CONFIDENCE) FOR LOCAL, LACE1 AND

LACE2 FOR THE 10 DATA SETS, FOR PD, PF AND G-MEASURE. ZEROS (0)
MEAN NO SIGNIFICANT DIFFERENCE, MINUSES (–) MEAN THAT EITHER

LACE1 OR LACE2 ARE SIGNIFICANTLY WORSE THAN LOCAL OR LACE1.

Mann Whitney LACE1→local LACE2→local LACE2→LACE1

pd 0 0 0

pf – – –

g-measure 0 0 0

Note that the data set names in Table VI are different from

Table V. To mimic true cross-project learning in these exper-

iments, the proprietary data sets of Table V are used to build

the cache of shared data, and the resulting prediction model

is evaluated against the open source data sets of Table VI.

Table VI comments on the benefits of sharing. Note that

LACE’s intelligent selection of training data can lead to much

higher pds. Overall, in 6
10 data sets, the median pd seen after

learning from LACE2 was relatively higher that learning from

the local data and LACE1 data. More generally, consider the

five local pd results that are less than 50% (for ant-1.7, camel-

1.6, ivy-2.0, jEdit-4.1, xerces-1.3). LACE2 boosts all of these

results by 15% (for xerces) to 50% (ivy-2.0).

As to pfs, increasing the probability of detection usually

means some more false alarms. Hence, LACE2’s pfs are higher

than those using the local data or LACE1. That said, the pfs

shown here for LACE2 are not abnormally large compared

to prior results (median pf median here = 36%; median pf in

a IEEE TSE paper=28% [37]). Also, some of those large pfs

are associated with substantial pd improvements. For example,

ivy-2.0’s pd,pf for local and LACE2 are (30,5) and (80,45)

respectively (which is a marked improvement).

While individual results differ, there is no overall loss

of predictive efficacy due to LACE2. Table VII checks for

significant differences between these prediction results. In the

column headers, the arrows indicate the direction to interpret

the results. For example, for the pf values for LACE1→local,

LACE1 has significantly worse pfs than local. When we

compare LACE2 with local result, we find that for pd and

g-measure, there are no significant difference in the results.

However, we find that LACE2 pfs are significantly worse than

local. The same can be said when LACE2 is compared with

LACE1 and LACE1 is compared with local.

The interesting feature of these results is that the LACE2

results are no worse than LACE1. This is surprising since

in LACE1 data owners contribute approximately three times

more data than those data owners who apply LACE2 (as seen

in the next section). Thus we say:

Overall, there is no loss of predictive efficacy due

to the multi-party computation of LACE2.

C. RQ3: Are the systems costs of LACE2 (runtime and mem-

ory) worse than LACE1?

Table VIII shows the number of instances and the per-

centage of instances that are added to the private cache by

each proprietary project for LACE1 and LACE2. The last row

shows the median runtimes in seconds that it takes to build the

final private cache. The data sets in the first column are sorted

from the least number of instances to the most number of

instances. We recognize that if the actual values in column

two are small enough, any reduction might be essentially

meaningless, but if the numbers are large, a reduction might

not be enough to matter in practice.

From our results we find that this is the case with LACE1

whose reduction is solely the responsibility of CLIFF (§III-D1)

which selects the top 20% of the most powerful instances in a

data set. While with LACE2, in addition to CLIFF, reduces

the number of instances shared by using LeaF (§III-D2),

and LeaF selection is based on instances being dissimilar

to those in the private cache rather than a fixed percentage.

Therefore in the case of LACE1 as the data sets get larger

the reduction will eventually not be enough to matter. LACE2

avoids this reality when data shared by different data owners

are similar, for example, in Table VIII, prop43-ver512 and

prop5-ver185 contains 2265 and 3260 instances respectfully.

This is a difference of 995 instances, however the selected

instances for LACE1 is a difference of 151 while for LACE2

it’s 2.

Results in Table VIII also show that LACE2 takes similar

time to LACE1 to create the final private cache. Further, the

memory requirements for that cache are reduced from 15.7%

of the data (with LACE1) to 4.5% of the data (with LACE2).

Hence, we conclude:

LACE2’s multi-party computation does not take

more resources than LACE1.

This is an important result since as discussed in §II-C, prior

results reported a significant systems overhead associated with

multi-party computation.

D. Threats to Validity

As with any empirical study, biases can affect the final

results. Therefore, any conclusions made from this work must

be considered with the following issues in mind:

1. Sampling bias threatens any classification experiment;

i.e., what matters there may not be true here. For example,

the data sets used here comes from the PROMISE repository

and were supplied by one individual. Also even though we

use ten open-source data sets for CPDP (Table III) and seven

to run LACE (Table III), and the data covers a large scope

of applications including text/xml processing systems, search

engines, source code integration/build tools, and management

information systems, they are all from Java systems.

2. Learner bias: For building the defect predictors in this

study, we elected to use k-Nearest Neighbor. We chose the k-

Nearest Neighbor because its results were comparable to the

more complicated algorithms [38] and can act as a baseline

for other algorithms. Classification is a large and active field

and any single study can only use a small subset of the known

classification algorithms.

3. Evaluation bias: This paper uses one measure of privacy,

IPR. Other privacy measures used in software engineering

include guessing anonymity [39], [40], and entropy [41], [42]

(discussed in §IV-D). Measuring privacy with other measures

is left for future work.

4. Order bias: With LACE2, the order that the data owners

get access to the private cache affects the amount of data that

they submit to the cache. To mitigate this order bias, we run

the experiment 10 times randomly changing the order of the

data owners each time.

5. Input bias: For the MORPH algorithm, we randomly

select input values for a set range to determine the boundary

between the an instance and its nearest unlike neighbor within

which we create MORPHed instances. Since different input

values can result in different outputs, we mitigate this bias

with 10 runs of the experiment for LACE1 and LACE2.

E. Relation to Other Work

LACE2 is designed based on the privacy needs of CPDP.

Other researchers in SE focus on privacy in software testing

and debugging [39]–[43], This becomes an issue when it in-

volves: 1) Collecting user information after a software system

has been deployed [41], [42]; Or 2) outsourcing the software

testing to third parties (e.g. see Budi et al. [43], Taneja et

al. [39] and Li et al [40]). In this case, companies do not wish

to release actual cases for testing. Hence, they anonymize the

test cases before releasing them to testers.

Work published by Castro et al. in 2008 [41], sought to

provide a solution to the problem of software vendors who

need to include sensitive user information in error reports to

reproduce a bug. To protect sensitive user information, the

authors used symbolic execution along the path followed by a

failed execution to compute path conditions. Their goal was to

compute new input values unrelated to the original input. The

new input values satisfied path conditions required to make

the software follow the same execution path until it failed.

TABLE VIII
NUMBER OF INSTANCES ADDED TO THE PRIVATE CACHE BY EACH PROPRIETARY PROJECT. THE LAST ROW SHOWS THE MEDIAN RUNTIMES IN SECONDS

THAT IT TAKES TO BUILD THE FINAL PRIVATE CACHE.

Proprietary Data #Instances #LACE1 %LACE1 #LACE2 %LACE2

prop42-ver454 295 55 19% 18 6%
prop43-ver512 2265 349 15% 93 4%
prop3-ver318 2440 381 16% 109 4%
prop2-ver276 2472 377 15% 95 4%
prop4-ver362 2865 441 15% 130 5%
prop5-ver185 3260 500 15% 95 3%
prop1-ver192 3692 526 14% 203 5%

17289 2629 15.7% 743 4.5%

Median Runtime 2205 seconds 2059 seconds

As a follow-up to the Castro et al. [41] paper, Clause

et al. [42] presented an algorithm which anonymized input

sent from users to developers for debugging. Like Castro et

al. [41], the aim of Clause et al. was to supply the developer

with anonymized input which causes the same failure as the

original input. To accomplish this, they first use a novel “path

condition relaxation” technique to relax the constraints in

path conditions thereby increasing the number of solutions for

computed conditions.

In contrast to the work done Castro [41] and Clause [42],

Taneja et al. [39] proposed PRIEST, a privacy framework. Un-

like our work, which privatizes data randomly within “nearest

unlike neighbor” border constraints, the privacy algorithm in

PRIEST is based on data-swapping where each value in a data

set is replaced by another distinct value of the same attribute.

This is done according to some probability that the original

value will remain unchanged.

Work by Taneja et al. [39], followed work done by Budi et

al. [43]. Similarly, their work focused on providing privatized

data for testing and debugging. They were able to accomplish

this with a novel privacy algorithm called kb-anonymity. This

algorithm combined k-anonymity with the concept of program

behavior preservation which guide the generation of new test

cases based on known ones and make sure the new test cases

satisfy certain properties [43]. The difference with the follow-

up work by Taneja et al [39], is that while Budi et al. [43]

replaces the original data with new data, in Taneja’s work [39],

the data-swapping algorithm maintains the original data and

offers individual privacy by swapping values.

Software test outsourcing work by Li et at. [40], follows a

similar approach to our work in privacy for CPDP (LACE1 and

now LACE2 with LeaF): 1) Don’t use all the data (minimize),

and 2) obfuscate data that are used. Li et al. accomplish

this through the process of securing centroids using a novel

combination of data mining approaches, program analysis, and

privacy constraints.

F. Future Work

In the study of data privacy, modeling the adversary’s

background knowledge is important to determine how private

a data set is. In this paper we only focused on background

knowledge specific to the original data sets. Other types of

background knowledge need to be considered.

The above results need to be explored on a wider range of

data sets. For example, it would be interesting to check if the

above results hold for more than just defect prediction.

The runtimes reported above were generated from a single

core machine simulating data being passed around a commu-

nity of data owners. It is possible that a much faster parallel

computation could be achieved if (a) when sending a cache,

it gets dispatched to N > 1 other data owners; and (b) when

receiving N > 1 caches, there is some work on combining

data from different caches.

Finally, LACE2 considers all attributes somewhat equal

with respect to the semantic meaning of their data. Future

work would consider that some attributes (not identifiers) have

higher impact and should be treated differently.

VI. CONCLUSIONS

Studies have shown that early detection and fixing of defects

in software projects is less expensive than finding defects later

on [44]. Organizations with local data can take full advantage

of this early detection benefit by doing local defect prediction.

When an organization does not have enough local data to build

defect predictors, they might try to access relevant data from

other organizations in order to perform cross defect prediction.

That access will be denied unless the privacy concerns of the

data owners can be addressed.

This paper has presented LACE2, a novel private multi-

party sharing protocol for CPDP. LACE2 is an extension of our

prior system (LACE1) [6] and offers and additional method for

data sharing with significant improvement over our LACE1.

LACE2 is a multi-party computation that works incrementally

on sub-samples of the data. The experiments of this paper

show that this approach generates higher privacy than LACE1

without damaging predictive efficacy. Better yet, measured in

terms of runtimes and how much data must be based around

the network, LACE2 is not more expensive than LACE1.

We hope that this result encourages more data sharing, more

cross-project experiments, and more work on building software

engineering models that are general to large-scale systems.

ACKNOWLEDGMENT

This work was partially funded by a National Science Foun-

dation CISE medium grant (#1302169), Science Foundation

Ireland grant 10/CE/I1855 and by the European Research

Council (Advanced Grant 291652 - ASAP).

REFERENCES

[1] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process.” in ESEC/SIGSOFT FSE’09, 2009, pp. 91–100.

[2] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, pp. 540–578, 2009.

[3] E. Weyuker, T. Ostrand, and R. Bell, “Do too many cooks spoil the
broth? using the number of developers to enhance defect prediction
models,” Empirical Software Engineering, October 2008.

[4] T. Menzies, O. Elrawas, J. Hihn, M. Feather, R. Madachy, and B. Boehm,
“The business case for automated software engineering,” in Proceedings

of the twenty-second IEEE/ACM international conference on Automated

software engineering. New York, NY, USA: ACM, 2007, pp. 303–312.
[5] F. Peters and T. Menzies, “Privacy and utility for defect prediction:

Experiments with morph,” in Proceedings of the 2012 International

Conference on Software Engineering, ser. ICSE 2012. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 189–199.

[6] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and
utility in cross-company defect prediction,” Software Engineering, IEEE

Transactions on, vol. 39, no. 8, pp. 1054–1068, Aug 2013.
[7] M. Grechanik, C. Csallner, C. Fu, and Q. Xie, “Is data privacy always

good for software testing?” in Proceedings of the 2010 IEEE 21st Inter-

national Symposium on Software Reliability Engineering. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 368–377.

[8] J. Brickell and V. Shmatikov, “The cost of privacy: destruction of data-
mining utility in anonymized data publishing,” in Proceeding of the

14th ACM SIGKDD international conference on Knowledge discovery

and data mining. New York, NY, USA: ACM, 2008, pp. 70–78.
[9] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and

B. Turhan, “The promise repository of empirical software engineering
data,” June 2012. [Online]. Available: promisedata.googlecode.com

[10] J. Vaidya and C. Clifton, “Privacy-preserving data mining: why, how,
and when,” Security Privacy, IEEE, vol. 2, no. 6, pp. 19–27, Nov 2004.

[11] R. Selby, “Enabling reuse-based software development of large-scale
systems,” Software Engineering, IEEE Transactions on, vol. 31, no. 6,
pp. 495–510, June 2005.

[12] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus
within-company cost estimation studies: A systematic review,” IEEE

Transactions on Software Engineering, vol. 33, pp. 316–329, 2007.
[13] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the ”imprecision” of

cross-project defect prediction,” in Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software Engineer-

ing. New York, NY, USA: ACM, 2012, pp. 61:1–61:11.
[14] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-

company software defect prediction,” Information and Software Tech-

nology, vol. 54, no. 3, pp. 248 – 256, 2012.
[15] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on

the feasibility of cross-project defect prediction,” Automated Software

Engineering, vol. 19, pp. 167–199, 2012.
[16] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,

B. Turhan, and T. Zimmermann, “Local versus global lessons for
defect prediction and effort estimation,” Software Engineering, IEEE

Transactions on, vol. 39, no. 6, pp. 822–834, June 2013.
[17] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings

of the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 382–391.

[18] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-source
projects: An empirical study on defect prediction,” in Empirical Soft-

ware Engineering and Measurement, 2013 ACM / IEEE International

Symposium on, Oct 2013, pp. 45–54.
[19] B. C. M. Fung, R. Chen, and P. S. Yu, “Privacy-Preserving Data

Publishing: A Survey on Recent Developments,” Computing, vol. V,
no. 4, pp. 1–53, 2010.

[20] A. Gkoulalas-Divanis, G. Loukides, and J. Sun, “Publishing data from
electronic health records while preserving privacy: A survey of algo-
rithms,” Journal of biomedical informatics, vol. 50, pp. 4–19, 2014.

[21] L. Sweeney, “k-anonymity: A model for protecting privacy,” IEEE

Security And Privacy, vol. 10, no. 5, pp. 557–570, 2002.
[22] M. Barbaro, T. Zeller, and S. Hansell, “A face is

exposed for aol searcher no. 4417749,” New York Times,
vol. 9, no. 2008, p. 8, August 2006. [Online]. Available:
http://www.nytimes.com/2006/08/09/technology/09aol.html

[23] M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, pp. 820 – 827, 2012.

[24] S. Kotsiantis and D. Kanellopoulos, “Discretization techniques: A recent
survey,” GESTS International Transactions on Computer Science and

Engineering, vol. 32, no. 1, pp. 47–58, 2006.
[25] O. Jalali, T. Menzies, and M. Feather, “Optimizing requirements deci-

sions with keys,” in Proceedings of the 4th International Workshop on

Predictor Models in Software Engineering, ser. PROMISE ’08. New
York, NY, USA: ACM, 2008, pp. 79–86.

[26] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2012.
[27] D. Aha, D. Kibler, and M. Albert, “Instance-Based Learning Algo-

rithms,” Machine Learning, vol. 6, no. 1, pp. 37–66, JAN 1991.
[28] M. Jureczko and L. Madeyski, “Towards identifying software project

clusters with regard to defect prediction,” in Proceedings of the 6th

International Conference on Predictive Models in Software Engineering,
ser. PROMISE ’10. New York, NY, USA: ACM, 2010, pp. 9:1–9:10.

[29] M. Jureczko, “Significance of different software metrics in defect
prediction,” Software Engineering: An International Journal, vol. 1,
no. 1, pp. 86–95, 2011.

[30] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Informa-

tion Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–27, 1967.
[31] D. Lewis, “Naive (bayes) at forty: The independence assumption in

information retrieval,” in Machine Learning: ECML-98, ser. Lecture
Notes in Computer Science, C. Ndellec and C. Rouveirol, Eds. Springer
Berlin / Heidelberg, 1998, vol. 1398, pp. 4–15.

[32] C. Bishop and G. Hinton, Neural Networks for Pattern Recognition.
Clarendon Press, 1995.

[33] E. Osuna, R. Freund, and F. Girosit, “Training support vector machines:
an application to face detection,” in Computer Vision and Pattern Recog-

nition, 1997. Proceedings., 1997 IEEE Computer Society Conference on,
jun 1997, pp. 130 –136.

[34] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung, “Exploiting the
essential assumptions of analogy-based effort estimation,” Software

Engineering, IEEE Transactions on, vol. 38, no. 2, pp. 425–438, March
2012.

[35] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault pre-
diction models,” Empirical Software Engineering, vol. 13, pp. 561–595,
2008.

[36] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems
with precision: A response to “comments on ‘data mining static code
attributes to learn defect predictors’”,” IEEE Trans. Softw. Eng., vol. 33,
no. 9, pp. 637–640, Sep. 2007.

[37] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE Trans-

actions on, vol. 33, no. 1, pp. 2 –13, jan. 2007.
[38] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking

classification models for software defect prediction: A proposed frame-
work and novel findings,” Software Engineering, IEEE Transactions on,
vol. 34, no. 4, pp. 485 –496, july-aug. 2008.

[39] K. Taneja, M. Grechanik, R. Ghani, and T. Xie, “Testing software
in age of data privacy: A balancing act,” in Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on

Foundations of Software Engineering, ser. ESEC/FSE ’11. New York,
NY, USA: ACM, 2011, pp. 201–211.

[40] B. Li, M. Grechanik, and D. Poshyvanyk, “Sanitizing and minimizing
databases for software application test outsourcing,” IEEE International

Conference on Software Testing Verification and Validation, 2014.
[41] M. Castro, M. Costa, and J.-P. Martin, “Better bug reporting with

better privacy,” in Proceedings of the 13th international conference

on Architectural support for programming languages and operating

systems. New York, NY, USA: ACM, 2008, pp. 319–328.
[42] J. Clause and A. Orso, “Camouflage : Automated anonymization of

field data,” Proceeding of the 33rd international conference on Software

engineering, pp. 21–30, 2011.
[43] A. Budi, D. Lo, L. Jiang, and Lucia, “kb-anonymity: a model for

anonymized behaviour-preserving test and debugging data,” in Proceed-

ings of the 32nd ACM SIGPLAN conference on Programming language

design and implementation, ser. PLDI ’11. New York, NY, USA: ACM,
2011, pp. 447–457.

[44] B. Boehm and P. Papaccio, “Understanding and controlling software
costs,” IEEE Trans. on Software Engineering, vol. 14, no. 10, pp. 1462–

1477, October 1988.

