
JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 1

Exploiting the Essential Assumptions of
Analogy-based Effort Estimation

Ekrem Kocaguneli, Student Member, IEEE, Tim Menzies, Member, IEEE,
Ayse Bener, Member, IEEE, and Jacky W. Keung, Member, IEEE

Abstract—
Background : There are too many design options for software effort estimators. How can we best explore them all?
Aim: We seek aspects on general principles of effort estimation that can guide the design of effort estimators.
Method: We identified the essential assumption of analogy-based effort estimation: i.e. the immediate neighbors of a project offer
stable conclusions about that project. We test that assumption by generating a binary tree of clusters of effort data and comparing the
variance of super-trees vs smaller sub-trees.
Results: For ten data sets (from Coc81, Nasa93, Desharnais, Albrecht, ISBSG, and data from Turkish companies), we found: (a) the
estimation variance of cluster sub-trees is usually larger than that of cluster super-trees; (b) if analogy is restricted to the cluster trees
with lower variance then effort estimates have a significantly lower error (measured using MRE, AR and Pred(25) with a Wilcoxon test,
95% confidence, compared to nearest-neighbor methods that use neighborhoods of a fixed size).
Conclusion: Estimation by analogy can be significantly improved by a dynamic selection of nearest neighbors, using only the project
data from regions with small variance.

Index Terms—Software Cost Estimation, Analogy, k -NN

!

1 INTRODUCTION

Software effort estimates are often wrong by a factor of
four [1] or even more [2]. As a result, the allocated funds
may be inadequate to develop the required project. In
the worst case, over-running projects are canceled and
the entire development effort is wasted. For example,
NASA canceled its incomplete Check-out Launch Con-
trol System project after the initial $200M estimate was
exceeded by another $200M [3].

It is clear that we need better ways to generate project
effort estimates. However, it is not clear how to do that.
For example, later in this paper we document thousands
of variations for analogy-based effort estimation (ABE).
Effort estimation is an active area of research [4]–[7]
and more variations are constantly being developed. We
expect many more variations of ABE, and other effort
estimation methods, to appear in the very near future.

Recent publications propose data mining toolkits for
automatically exploring this very large (and growing)
space of options for generating effort estimates. For
example, in 2006, Auer et al. [8] proposed an exten-
sive search to learn the best weights to assign different
project features. Also in that year, Menzies et al. [9]’s

• Ekrem Kocaguneli is with the Lane Department of Computer Science
and Electrical Engineering, West Virginia University. E-mail: ekoca-
gun@mix.wvu.edu

• Tim Menzies is with the Lane Department of Computer Science and
Electrical Engineering, West Virginia University. E-mail: tim@menzies.us

• Ayse Bener is with TRSITM, Ryerson University. E-mail:
ayse.bener@ryerson.ca

• Jacky W. Keung is with the Department of Computing at The Hong Kong
Polytechnic University. E-mail: jacky.keung@comp.polyu.edu.hk

COSEEKMO tool explored thousands of combinations of
discretizers, data pre-processors, feature subset selectors,
and inductive learners. In 2007, Baker proposed an ex-
haustive search of all possible project features, learners,
etc. He concluded that such an exhaustive search was
impractical [10].

The premise of this paper is that we can do better
than a COSEEKMO-style brute-force search through the
space of all variants of effort estimators. Such studies are
computationally intensive (the COSEEKMO experiments
took two days to terminate). With the ready availability
of cheap CPU farms and cloud computing, such CPU-
investigations are becoming more feasible. On the other
hand, datasets containing historical examples of project
effort are typically small1. In our view, it seems mis-
directed to spend days of CPU time just to analyze a
few dozen examples. These CPU-intensive searches can
generate gigabytes of data. Important general properties
of the estimation process might be missed, buried in all
that data. As shown below, if we exploit these aspects,
we can significantly improve effort estimates.

This paper proposes an alternative to brute-force and
heuristic search. According to our easy path principle for
designing an effort predictor:

Find the situations that confuse estimation. Remove
those situations.

(Later in this paper, in §3.2, we will offer a precision
definition of “confuse estimation”. For now, we need

1. For example, the effort estimation datasets used in Mendes et
al. [11], Auer et al. [8], Baker [10], this study, and Li et al. [12] have
median size (13,15,31,33,52), respectively.

Digital Object Indentifier 10.1109/TSE.2011.27 0098-5589/11/$26.00 © 2011 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 2

only say that confused estimates are highly inaccurate).
The easy path is not standard practice, i.e. it is a

heuristic. Usually, prediction systems are matured by
adding mechanisms to handle the harder cases (cases
for whom estimation accuracy is lower). For example,
the AdaBoost algorithm generates a list of learners, and
each learner focuses on the examples that were poorly
handled by the one before [13].

Focusing on just the easy cases (cases for whom
estimation accuracy is higher) could be problematic. If
we only explore the easy cases, we could perform badly
on the hard test cases. On the other hand, if the easy
path works, it finds short-cuts that simplifies future
effort estimation work. Also, it avoids COSEEKMO’s
brute-force search since, according to this principle, we
only explore the options that challenge the essential
assumptions of the predictor.

The rest of this paper uses the easy path to build
and evaluate an effort estimator called TEAK (short for
“Test Essential Assumption Knowledge” and available
at http://unbox.org/wisp/tags/teak/). In keeping with
the easy path, we only explored design options that
commented on TEAK’s essential assumptions; specifi-
cally: (a) case subset selection and (b) how many training
examples should be used for estimation.

TEAK’s design applied the easy path in five steps:
1) Select a prediction system.
2) Identify the predictor’s essential assumption(s).
3) Recognize when those assumption(s) are violated.
4) Remove those situations.
5) Execute the modified prediction system.

On evaluation, we found that for the data sets studied
here, TEAK generated significantly better estimates than
comparable methods.

More generally, the success of the easy path principle
recommends it for future research. When designing a
predictor, it is useful to first try optimizing for the
situations where prediction is easy, before struggling with
arcane and complex mechanisms to handle the harder
situations. For example, in future work, we will apply
steps 1,2,3,4,5 to other aspects of effort estimation like
feature weighting, and similarity measures.

The rest of this paper is structured as follows. After a
review of the general field of effort estimation, we will
focus on ABE (analogy-based estimation). For ABE, we
will work through the above five steps to design TEAK.
TEAK’s performance will then be compared against six
other ABE systems. Our conclusion will be to recom-
mend TEAK for effort estimation.

The paper uses the notation of Figure 1.

2 BACKGROUND
2.1 Scope
This paper is not a detailed comparison of analogy-based
estimation to other estimation methods (for such a large
scale comparison of many different methods, the reader
is referred to [9], [14]). While we compare our proposed

Symbol Explanation
ABE Analogy Based Estimation.
ABE0 A baseline ABE method.
NNet A neural net prediction system with one hidden layer.
LR Linear regression.
GAC Greedy Agglomerative Clustering.
TEAK Test Essential Assumption Knowledge.
GAC1, GAC2 First and second GAC trees within TEAK.
x, y Depending on the context, x and y can refer to two

instances/projects in a dataset or alternatively to two
vertices in a GAC tree.

xi, yi ith features of projects x and y respectively.
wi Feature weight for the difference of features xi and yi

in Euclidean distance function.
Lx, Ly , Lz Leaves of the sub-trees whose roots are x, y and z

respectively.
kx, ky , kz The number of leaves in Lx, Ly , Lz respectively.
k-NN k Nearest Neighbors.
k An italic k alone refers to analogies, i.e. selected similar

projects.
bi,bj , ci, cj All these symbols are related to discretization of con-

tinuous columns. bi and bj refer to breakpoints i and
j, which in return produce discrete bins that have
counts of ci and cj instances within themselves.

Best(K) A procedure that heuristically finds the best k value
for a dataset.

σ2
x, σ2

yz Assuming that x, y and z are vertices in a GAC tree
and x is the parent of y and z, σ2

x refers to the variance
of instances in x and σ2

yz refers to the weighted sum
of the variances of y and z.

α, β, γ, R,
max(σ2)

These symbols are associated with different pruning
policies. α, β and γ keep user-defined values to fine-
tune pruning. R is a random variable that can have
values from 0 to 1. max(σ2) refers to maximum
variance of all sub-trees in a GAC tree.

T, N T refers to a given dataset and N refers to a test set
out of this dataset.

predictedi The effort of test instance Ni ∈ N predicted by some
induced prediction system.

actuali The actual effort seen in test instance NiinN
AR Absolute residual. |actuali − predictedi|
MRE magnitude of relative error. AR

actuali
PRED(X) The percentage of estimates that are within X% of the

actual value.
wini, tiei, lossi The total number of wins, ties and losses of a variant

in comparison to other variants according to Wilcoxon
signed rank test.

Fig. 1: The explanations of symbols that are used in our
research are summarized here. Symbols that are related
to each other are grouped together.

new technique to a limited number of other estimation
methods (specifically, neural networks and regression),
that comparison is only to ensure that analogy-based
estimation is not noticeably worse than other methods
in widespread use.

The main point of this paper is as follows. Analogy-
based effort estimation is a widely-used and widely-
studied technique [8], [12], [15]–[25]. This paper reports
a novel method to improve that technique. Specifically,
when estimating via analogy, it is best to first prune all
subsets of the data with high variance. We will argue that a
new variance heuristic is a better way to select analogies:

• Without this heuristic, analogies are selected by their
distance to the test instance.

• With this heuristic, a pre-processor prunes the space
of possible analogies, removing the subsets of the
data with high variance (in high variance subsets,
training data offers highly variable conclusions).

This heuristic works, we believe, since if a test instance
falls into such subsets then (by definition) minor changes
to the test will lead to large changes in the prediction
(due to the variability in that region). We show below
that, by removing those problematic subsets, effort esti-
mation by analogy can be improved.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 3

2.2 Analogous Approaches
While the variance heuristic is novel and unique in the
effort estimation literature, analogous proposals can be
found in the requirements engineering literature, dating
back to the 1990s. In the seminal paper “To Be and Not
To Be”, Nuseibeh [26] discusses a spectrum of methods
for handling inconsistent specifications. One method
is circumvent; i.e. instead of expending effort resolving
regions of contradiction, add “pollution markers” that
screen the problematic regions away from the rest of
the system. Note that our variance heuristic (that prunes
the data subsets with high variance) is something like a
pollution marker since it guides the reasoning away from
problematic training data.

Another use for such marks is to mark any segments
that human agents need to explore. Turning back from
requirements engineering (which was the focus of Nu-
seibeh’s discussion) back to effort estimation (which is
the focus of this paper), we could utilize pollution marks
to highlight regions where more data collection might
be beneficial. Note that this approach is not explored
here since our premise is that we must make the best
use possible of fixed data. However, this might be a
promising area of future research.

2.3 Effort Estimation
Having set the context for this paper, we now turn to
the details.

After Shepperd [6], we say that software project effort
estimation usually uses one of three methods:

• Human-centric techniques (a.k.a. expert judgment);
• Model-based techniques including:

– Algorithmic/parametric models such
COCOMO [1], [27];

– Induced prediction systems.
Human centric techniques are the most widely-used

estimation method [28], but are problematic. If an esti-
mate is disputed, it can be difficult to reconcile com-
peting human intuitions (e.g.) when one estimate is
generated by a manager who is senior to the other
estimator. Also, Jorgensen [29] reports that humans are
surprisingly poor at reflecting and improving on their
expert judgments.

One alternative to expert judgment is a model-based
estimate. Models are a reproducible methods for generat-
ing an estimate. This is needed for (e.g.) U.S. government
software contracts that require a model-based estimate
at each project milestone [9]. Such models are used to
generate and audit an estimate, or to double-check a
human-centric estimate.

Model-based estimates can be generated using an
algorithmic/parametric approach or via induced pre-
diction systems. In the former, an expert proposes a
general model, then domain data is used to tune that
model to specific projects. For example, Boehm’s 1981
COCOMO model [1] hypothesized that development

effort was exponential on LOC and linear on 15 effort
multipliers such as analyst capability, product complexity,
etc. Boehm defined a local calibration procedure to tune
the COCOMO model to local data.

Induced prediction systems are useful if the available
local training data does not conform to the require-
ments of a pre-defined algorithmic/parametric model
such as COCOMO. There are many induction methods
including linear regression, neural nets, and analogy, just
to name a few [9], [30]. Analogy-based estimation is
discussed in detail in the next section. In order to give
the reader some context, we offer here some notes on
none-analogy methods (estimation methods other than
analogy based estimation). Regression assumes that the
data fits some function. The parameters of that function
are then adjusted to minimize the difference between the
values predicted by the model and the actual values in
the training data. For example, in linear regression, the
model is assumed to be of the form:

y = β0 + β1x1 + β2x2 + ...

where xi are model inputs, y are the model outputs and
βi are the coefficients adjusted by a linear regression
induction system.

Neural nets are useful when the data distributions are
not simple linear functions [31]–[33]. An input layer of
project details is connected to zero or more “hidden”
layers which, in turn, connect to an output node (the
effort prediction). The connections are weighted directed
edges. If the signal arriving to a node sums to greater
than some threshold value, the node is said to “fire” and
a weight is propagated across the network. Learning in
a neural net compares the output value to the expected
value, then applies some correction method to improve
the edge weights (e.g. the “back propagation” algorithm
first invented by Bryson and Ho in 1969 [34], and made
popular by Rumelhart et al. in the 1980s [35]).

All induction systems require a bias in order to decide
what details can be safely ignored. For example, linear
regression assumes that the effort data fits a straight line.
When data does not match the bias of the induction
system, various patches have been proposed. Boehm [1,
p526-529] and Kitchenham & Mendes [36] advocate tak-
ing the logarithms of exponential distributions before
applying linear regression. Selecting the right patch is
typically a manual process requiring an analyst experi-
enced in effort estimation.

2.4 Analogy-based Estimation (ABE)

In ABE, effort estimates are generated for a test project
by finding similar completed software projects (a.k.a. the
training projects). Following Kadoda & Shepperd [19],
Mendes et al. [11], and Li et al. [12] we define a baseline
ABE called ABE0, as follows.

ABE0 executes over a table of data where:
• Each row contains one project;

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 4

• Columns contain independent variables (features) in
the projects and dependent variables (features) that
stores, for example, effort and duration required to
complete one project.

After processing the training projects, ABE0 inputs one
test project then outputs an estimate for that project.
To generate that estimate, a scaling measure is used to
ensure all independent features have the same degree
of influence on the distance measure between test and
training projects. Also, a feature weighting scheme is
applied to remove the influence of the less informative
independent features. For example, in feature subset
selection [37], some features are multiplied by zero to
remove redundant or noisy features.

The similarity between the target project case and
each case in the case-based repository is determined
by a similarity measure. There are different methods
of measuring similarity have been proposed for dif-
ferent measurement contexts. A similarity measure is
measuring the closeness or the distance between two
data objects in an n-dimensional feature space, the result
is usually presented in a distance matrix (or similarity
matrix) identifying the similarity among all cases in
the dataset. The Euclidean distance metric is the most
commonly used in ABE for its distance measures, and
it is suitable for continuous values such as software
size, effort and duration of a project. It is based on the
principle of Pythagorean Theorem to derive a straight
line distance between two points in n-dimensional space.

In general, the unweighted Euclidean distance be-
tween two points P = (p1, p2, ..., pn) and Q =
(q1, q2, ..., qn), and can be defined and calculated as:

√
(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 =

√√√√
n∑

i=1

(pi − qi)2 (1)

An alternative is to apply different weights to each
individual project feature to reflect the its relative impor-
tance in the prediction system. The weighted Euclidean
distance can be calculated as:

√
w1(p1 − q1)2 + w2(p2 − q2)2 + ... + wn(pn − qn)2 =

√√√√
n∑

i=1

wi(pi − qi)2

(2)

where w1 and wn are the weights of 1st and nth project
features. Note that in the special case of wi = 1 (i.e. equal
weighting) then the equations are identical.

The above Euclidean distance functions are suitable
for general problems, particularly when values are of
continuous nature. There are other different distance
metrics for non-continuous variable, these include, but
are not limited to Jaccard distance for binary distance
[38] and Gower distance described by Gower & Legen-
dre [39]. In this paper, we only consider the Euclidean
distance measure which is most relevant to the context
of software cost estimation.

Irrespective of the similarity measure used, the objec-
tive is to rank similar cases from the dataset to the target

case and utilize the known solution of the nearest k-
cases. The value of k in this case has been the subject
of debate in the ABE research community [19] [17].
Shepperd & Schofield [17] suggested the ideal value for
k is 3, that is, only three closest neighboring cases will
be considered. These k cases will be adjusted or adapted
to better fit the target problem by predefined rules, a
human expert or more commonly, using a simple mean
or median of the selected k cases.

2.5 Alternatives to ABE0
Within the space of ABE methods, ABE0 is just one
approach. Based on our reading of the literature we see
other variants that take different approaches to:

• The selection of relevant features;
• The similarity function;
• The weighting method used in similarity function;
• The case subset selection method (a.k.a selected

analogies or k value);
• And the adaption strategy (a.k.a solution function)

Not every paper explores every option. For example:
• In [19], the focus of Kadoda et al. is the impact of

the selected number of analogies;
• In [12] Li et al. study the effects of relevant subset

selection in training set (i.e. historical data) as well
as feature weighting in the similarity function;

• Auer et al. propose an optimal weight finding mech-
anism by means of extensive search in [8];

• In [15], Walkerden et al. investigate selected analo-
gies and compare the performance of human experts
to that of tools;

• Finally in [11], Mendes et al. limit historical data
to a single domain and compare different ABE
configurations to non-ABE methods.

Generalizing from the above, the following notes try to
map the space of options within current research [8],
[11], [12], [15], [19]. Since researchers are developing new
technologies for effort estimation all the time such as
AQUA [40], AQUA+ [20] and COSEEKMO [9], this map
is incomplete. However, it does illustrate our general
point that there are thousands of possible variants to
ABE.

2.5.1 Three Case Subset Selectors
A case subset selection is sometimes applied to improve
the set of training projects. These selection mechanisms
are characterized by how many cases they remove:

• Remove nothing: Usually, effort estimators use all
training projects [17]. ABE0 is using this variant.

• Outlier methods prune training projects with (say)
suspiciously large values [24]. Typically, this re-
moves a small percentage of the training data.

• Prototype methods find, or generate, a set of repre-
sentative examples that replace the training cases.
Typically, prototype generation removes most of
the training data. For example, Chang’s prototype

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 5

generators [41] explored three data sets A,B,C
of size 514, 150, 66 instances, respectively. He con-
verted these into new data sets A′, B′, C ′ contain-
ing 34, 14, 6 prototypes, respectively. Note that the
new data sets were very small, containing only
7%, 9%, 9% of the original data.

2.5.2 Eight Feature Weighting Methods

In other work Li et al. [12], and Hall & Holmes [37]
review eight different feature weighting schemes. Li et al.
uses a genetic algorithm to learn useful feature weights.
Hall & Holmes review a variety of methods ranging
from WRAPPER (a O(2F) search through all subsets of F
features) to various filters methods (that run much faster
than WRAPPER) including their preferred correlation-
based method.

In our own work, we have developed yet another
feature weighted scheme. The fundamental assumption
underlying ABE0 is that projects that are similar with
respect to project features will be also similar with re-
spect to project effort. To formally evaluate this hypoth-
esis, Keung et al. [24] developed a more comprehensive
solution towards ABE0, called Analogy-X (a.k.a AX).
For example, given two distance matrices constructed
from the selected predictor variables and the response
variable, we can correlate the two matrices and show
their distance correlation function. However different
ordering of the matrix elements may result different
matrix correlations, AX applies Mantel’s technique that
randomly permute the distance matrix elements 1,000
times to produce randomization statistic distribution.
Based on the Mantel correlation, AX selects the project
features that improves overall Mantel correlation and
uses a set of procedures similar to that of stepwise re-
gression to select the project features that are statistically
relevant to the solution space, effectively removes the
need for brute force feature selection in the classical
ABE0 proposed in [17]. More importantly AX provides a
statistical justification as to whether ABE should be used
for the dataset under investigation. Keung et al. [24]’s
study also concludes that dataset quality and variance
within the dataset are influential factors, removing data
points with large variance will improve prediction per-
formance.

2.5.3 Five Discretization Methods

Some feature weighting schemes require an initial dis-
cretization of continuous columns. Discretization divides
a continuous range at break points b1, b2, ..., each con-
taining a count c1, c2, ... of numbers [42]. There are many
discretization policies in the literature including:

• Equal-frequency, where ci = cj ;
• Equal-width, where bi+1 − bi is a constant;
• Entropy [43];
• PKID [44];
• Do nothing at all.

2.5.4 Six Similarity Measures
Mendes et al. [11] discuss three similarity measures
including the weighted Euclidean measure described
above, an unweighted variant (where wi = 1) and
a “maximum distance” measure that that focuses on
the single feature that maximizes inter-project distance.
Frank et al. [45] offer a fourth similarity measure that
uses a triangular distribution that sets to the weight
to zero, after the distance is more than “k” neighbors
away from the test instance. A fifth and sixth similarity
measures are the Minkowski distance measure used
in [46] and the mean value of the ranking of each project
feature used in [15].

2.5.5 Four Adaption Mechanisms
With regards to adaptation, the literature reports many
approaches including:

• Report the median effort value of the analogies;
• Report the mean dependent value;
• Summarize the adaptations via a second learner;

e.g. regression [10], model trees [9], [47] or neural
network [48].

• Report a weighted mean where the nearer analogies
are weighted higher than those further away [11];

2.5.6 Six Ways to Select Analogies
Li et al. [12] comment that there is much discussion in
the literature regarding the number of analogies to be
used for estimation. Numerous methods are proposed,
which we divide into fixed and dynamic.

Fixed methods use the same number of analogies for
all items in the test set. For example, Li et al. [12] report
that a standard fixed method is to always use 1 ≤ k ≤ 5
nearest projects:

• k = 1 is used by Lipowezky et al. [49] and Walker-
den & Jeffery [15];

• k = 2 is used by Kirsopp & Shepperd [50]
• k = 1, 2, 3 is used by Mendes el al. [11]
Dynamic methods adjust the number of analogies,

according to the task at hand. For example, following
advice from Martin Shepperd2, Baker [10] tuned k to
a particular training set using the following “Best(K)”
procedure:

1) Select N ⊆ T training projects at random;
2) For each k ∈ 1..T−N , compute estimates for n ∈ N ;
3) Find the k value with least error in step 2.
4) When estimating, use the k-nearest neighbors,

where k is set by step 3.
As shown in Figure 2, Best(K) recommends k values
that are very different to those seen in the standard
fixed methods. These results come from three commonly
used data sets (Desharnais, NASA93, and the original
COCOMO data set from [1]: for notes on these data sets,
see the document available at http://bit.ly/feimyA).

2. Personal communication.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 6

(a) Cocomo81

(b) Nasa93

(c) Desharnais

Fig. 2: Distribution of k after removing each project
instance, then applying Best(K) on the remaining data.
The y-axis counts the number of times a particular k
value was found by Best(K).

While ABE systems differ on many aspects, they all
use analogy selection . The Figure 2 results suggest that
there may be something sub-optimal about standard,
widely-used, fixed selection methods. Hence, the rest of
this paper takes a closer look at this aspect of ABE.

3 DESIGNING TEAK
The above sample of the literature describes

3× 8× 5× 6× 4× 6 > 17, 000

ways to implement similarity, adaptation, weighting, etc.
Some of these ways can be ruled out, straight away. For
example, at k = 1, then all the adaptation mechanisms
return the same result. Also, not all the feature weighting
techniques require discretization, decreasing the space
of options by a factor of five. However, even after
discarding some combinations, there are still thousands
of possibilities to explore. How might we explore all
these variations?

The rest of this paper applies the easy path to design
and evaluate an ABE system called TEAK (Test Essential
Assumption Knowledge). TEAK is an ABE0, with the
variations described below.

3.1 Select a Prediction System
Firstly, we select a prediction system. We use ABE since:

• It is a widely studied [8], [12], [15]–[25].
• It works even if the domain data is sparse [51].
• Unlike other predictors, it makes no assumptions

about data distributions or an underlying model.
• When the local data does not support standard al-

gorithmic/parametric models like COCOMO, ABE
can still be applied.

The easy path limits the space of design options to
just those that directly address the essential assumptions of
the predictor. As shown below, for ABE, this directs us
to issues of case subset selection and the number of
analogies used for estimation.

3.2 Identify Essential Assumption(s)
The second step is to identify the essential assumptions of
that prediction system. Although it is usually unstated, the
basic hypothesis underlying the use of analogy-based
estimation is that projects that are similar with respect to
project and product factors will be similar with respect
to project effort [25]. On the other hand, projects from
a high variance region are likely to have very different
project effort values and can decrease the accuracy in
estimation, which we quote as to “confuse estimation” in
our research. In other words:

Assumption One: Locality implies homogeneity (for
k > 1).

This assumption holds for project training data with the
following property:

• The k-nearest training projects with effort values
E1, E2, .., Ek have a mean value µ =

(∑k
i Ei

)
/k

and a variance σ2 =
(∑k

i (Ei − µ)2
)
/(k − 1).

• By Assumption One, decreasing k also decreases σ2.
• If all estimates always have the same distance to the

mean µ, then AssumptionOne always fails since in(∑k
i (Ei − µ)2

)
/(k−1), if the numerator is constant

then decreasing k will always increase the variance.
The core of ABE is the premise that in the neigh-

borhood of training instances, the reductions seen in(∑k
i (Ei − µ)2

)
dominates over the increases due to

1/(k − 1). As we shall see, this sometimes holds
(and sometimes it does not). For example, let us as-
sume that a node x has a left child y and a right
child z. Let us further assume that each child has
2 leaves/instances that contain the effort values of
leaves(y) ∈ {1253, 1440} staff hours and leaves(z) ∈
{1562, 5727} staff hours, which means that x contains
effort values of {1253, 1440, 1562, 5727}. With these val-
ues the variance (σ2) of each node would be as follows:
σ2
x = 4.6523e6, σ2

y = 1.7485e4 and σ2
z = 8.6736e6. In that

scenario, going from parent node x to child nodes will
create 2 cases:

1) Going to y: Reduction seen in
(∑k

i (Ei − µ)2
)

dom-
inates over the increase due to 1/(k − 1), i.e. the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 7

variance decreases when the number of instances
decreases.

2) Going to z: Reduction seen in
(∑k

i (Ei − µ)2
)

can-
not dominate over the increase due to 1/(k − 1),
i.e. the variance increases when the number of
instances decreases.

As can be seen in this example, it is not necessarily
true that moving to a smaller set of neighbors decreases
variance. As shown below, it can improve prediction
accuracy if ABE takes this matter into account.

3.3 Identify Assumption Violation
The third step is to recognize situations that violate the es-
sential assumption. Implementing this step requires some
way to compare the variance of larger-k estimates to
smaller-k estimates. One way to achieve this is to use
some clustering methods that generates a tree of clusters,
where each sub-tree contains training data that is closer
together than the super-tree.

There are many algorithms for generating trees of
clusters. The basic method, called greedy agglomerative
clustering (GAC) is used in various fields (data mining
[52], databases [53] bioinformatics [54]). GAC executes
bottom-up by grouping together at a higher level (i+1)
the closest pairs found at level i. The algorithm termi-
nates when some level i is found with only one node.
GAC is “greedy” in that it does not pause to consider
optimal pairings for vertices with very similar distances,
i.e. it never backtracks looking for (say) better pairings
at level i to reduce the distance between nodes at level
i+ 1.

The result of GAC is a tree like Figure 3. Note that,
in this tree, the original training data are found at the
leaves of the tree. All other nodes are nodes artificially
generated by GAC to represent the median of pairs
of the leaves, the median of the medians, and so on
(recursively).

A GAC tree can be viewed as a tree of clusters where
each node at height i is the centroid of the sub-clusters
at height i − 1. Given T initial instances, GAC builds a
trees of maximum height log2(T). Since the number of
vertices is halved at each next level, building a GAC tree
requires the following number of distance calculations:




log2(T)∑

i

(
T

2i−1

)2


 =
4

3

(
T 2 − 1

)

This O(T 2) computation is deprecated for large T . How-
ever, for this study, GAC construction takes less than a
second3. Our runtimes were fast because effort estima-
tion data sets are usually very small: Figure 4 shows all
our training projects contain less than 100 examples.

There are many other, faster, algorithms for generating
trees of clusters including bisecting k-means [55] which,

3. Using Matlab on a standard Intel x86 dual core notebook running
LINUX with 4GB of ram.

Fig. 3: A sample GAC tree built from 7 instances: a, b,
c, d, e, f and g. In each level the closest two nodes are
coupled-up to produce the nodes in one higher level.
However, odd numbered instances result in unbalanced
trees. In this figure, when all leaf nodes are paired up
(pairing of letters here is random and just for illustra-
tion), c remains alone. The alone remaining node at any
level, will find the closest node to itself in one higher
level and will merge to that node. For example c merges
to the node containing b and f .

at each level, calls k-means4 with k=2 several times to
split one cluster into two. The division leading to the
clusters with the best intra-cluster similarities are then
stored and used in subsequent splits. Other approaches,
like MESO [56], recursively divide the data into smaller
and smaller spheres containing close instances. MESO
uses an incremental method to learn and update what
close means for a particular data set.

We use GAC (with the distance measure of 1) rather
than other methods like bisecting k-means or MESO for
two reasons. Firstly, these other methods use various
heuristics to improve their runtimes. Our data sets are
so small that such heuristic methods are not necessary.
Secondly, our results (described below) with GAC are
so promising that we are not motivated to experiment
beyond GAC.

Using a GAC tree, finding the k-nearest neighbors in
project data can be implemented using the following
TRAVERSE procedure:

1) Place the test project at the root of the GAC tree.
2) Move the test project to the nearest child (where

“nearest” is defined by Equation 1).
3) Go to step 2

Clearly, a k = 1 nearest-neighbor estimate comes from
TRAVERSE-ing to a leaf, then reporting the effort of that
leaf. More generally, a k = N nearest-neighbor estimate
comes from TRAVERSE-ing to a sub-tree with N leaves,
then reporting the median efforts of those leaves.

TRAVERSE can test Assumption One. Let some current
vertex x have children y and z. We say that:

• The sub-trees starting at x, y, z have leaves
Lx, Ly, Lz (and Lx = Ly ∪ Lz).

• The number of sub-tree leaves is kx = ky + kz .

4. The k-means clustering algorithm selects centroids at random,
labels each instance by its nearest centroid, then updates the centroid
position to the central position of all instances with the same label.
The algorithm repeats till the centroid position stabilizes.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 8

• The variance of the leaves’ efforts are σ2
x, σ

2
y, σ

2
z .

• After C4.5 [57], we say the variance of the trees
below x (denoted σ2

yz) is the weighted sum:

σ2
yz =

ky
kx

σ2
y +

kz
kx

σ2
z

Parent trees have the nodes of their children (plus
one). If we TRAVERSE from a parent x to a child, then
the sub-tree size k decreases. That is, TRAVERSE-ing
moves into progressively smaller sub-trees.

Assumption One holds if, when TRAVERSE-ing from
all vertices x with children y and z, the sub-tree variance
decreases. That is:

∀x ∈ T : σ2
x > σ2

yz (3)

Note one special case of the above: In the case of
k = 1, variance is zero since, by definition, all members
of a sample of size one are the same. Hence, under that
scenario TEAK would mostly return leaf nodes, which
would lead to an erroneous execution. This scenario
was realized before the implementation phase and it
was addressed with a control mechanism. The control
mechanism lets the test instance go down the GAC
tree at most until one level higher than the leaves.
Therefore, the variance value that plays a decisive role
on the movement of test instances always comes from a
population of at least two instances.

3.4 Remove Violations
The fourth step in TEAK’s design is to remove the situa-
tions that violate the essential assumption. We instrumented
TRAVERSE to report examples where Equation 3 was
violated; i.e. where it recursed into sub-trees with a
larger variance than the parent tree. We found that this
usually occurs if a super-tree contains mostly similar
effort values, but one sub-tree has a minority of outliers.
For example:

• Suppose some vertex x has children y, z.
• Let each child start sub-trees whose leaves contain

the effort values leaves(y) ∈ {1253, 1440} staff hours
and leaves(z) ∈ {1562, 5727} staff hours.

In this example:
• The leaves of the parent tree x have similar effort

values: 1,253 and 1,562 and 1,440 staff hours.
• But the leaves of the subtree z has outlier values;

i.e. 5,727.
• TRAVERSE-ing from the super-tree x to the sub-tree

z increases the variance by two orders of magnitude.
A sub-tree pruning policy is used to prune sub-trees with
a variance that violates the essential assumption. We ex-
perimented with various policies that removed subtrees
if they had:

1) more than α times the parent variance;
2) more than β ∗max(σ2);
3) more than Rγ ∗ max(σ2), where R is a random

number 0 ≤ R ≤ 1.

In order to avoid over-fitting, our pruning policy ex-
periments were restricted to one data set (Boehm’s CO-
COMO embedded projects [1]) then applied, without
modification, to the others. The randomized policy (#3)
produced lowest errors, with smallest variance. The suc-
cess of this randomized policy suggests two properties
of effort estimation training data:

• The boundary of “good” training projects is not pre-
cise. Hence, it is useful to sometimes permit random
selection of projects either side of the boundary.

• The policy tuning experiments recommended γ = 9.
This selects for subtrees with less than 10% of the
maximum variance5. This, in turn, suggests that the
above example is typical of effort estimates; i.e. sub-
tree outliers are usually a few large effort values.

In theory, stochastic methods like policy #3 introduce a
degree of instability in the performance of the induction
system. In practice, this is not an issue with TEAK. In
the evaluation section, described below, we repeat out
analysis of TEAK 20 times using various performance
measures and experimental rigs. When we compare the
results of those repeated trials against just running TEAK
once, we can see no major performance differences.

3.5 Execute the Modified System
The final step in the design of TEAK is to build a new
prediction system. TEAK executes as follows:

• Apply GAC to the training projects to build a tree
called GAC1;

• Prune GAC1 using the sub-tree pruning policy de-
scribed above. The remaining leaves are the proto-
types to be used in effort estimation.

• Apply GAC to the prototypes to build a second tree
called GAC2.

• Place the test project at the root of GAC2. Compute
an estimate from the median value of the GAC2
projects found by TRAVERSE2. TRAVERSE2 is a
variant of TRAVERSE that ensures the essential
assumption is never violated. It stops recursing into
GAC2 sub-trees when Equation 3 is violated.

4 COMPARISONS

Recall the pre-experimental concern expressed above:
Taking the easy path might ignore important design
issues, to the detriment of the predictions. To address
that concern, this section compares TEAK to a range of
other ABE0 variants as well the other induced prediction
systems described in §2; i.e. neural nets and linear regres-
sion (we selected this particular range of algorithms at
the suggestion of reviewers of this paper).

As discussed above in §2.1, a detailed comparison of
analogy-based estimation to other estimation methods
is not the fundamental aim of this research. To observe
the results of such a detailed comparison, we found [9]

5. The mean of rand()9 ≈ 0.1.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 9

Historical Effort Data
Dataset Features T = |Projects| Content Units Min Median Mean Max Skewness
Cocomo81 17 63 NASA projects months 6 98 683 11400 4.4

Cocomo81e 17 28 Cocomo81 embedded projects months 9 354 1153 11400 3.4
Cocomo81o 17 24 Cocomo81 organic projects months 6 46 60 240 1.7

Nasa93 17 93 NASA projects months 8 252 624 8211 4.2
Nasa93c2 17 37 Nasa93 projects from center 2 months 8 82 223 1350 2.4
Nasa93c5 17 40 Nasa93 projects from center 5 months 72 571 1011 8211 3.4

Desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0
SDR 22 24 Turkish software projects months 2 12 32 342 3.9
Albrecht 7 24 Projects from IBM months 1 12 22 105 2.2
ISBSG-Banking 14 29 Banking projects of ISBSG hours 662 2355 5357 36046 2.6

Total: 448

Fig. 4: The 448 projects used in this study come from 10 data sets. Indentation in column one denotes a dataset
that is a subset of another dataset. For notes on this data, see the document available at http : //bit.ly/feimyA.

and [14] particularly helpful. In this research we compare
TEAK to other estimation methods (specifically, neural
networks and regression), merely to ensure that analogy-
based estimation is not significantly worse than other
methods in widespread use.

In the following comparisons, TEAK will be assessed
using:

• Two different experimental rigs (leave-one-out and
n-way cross-validation: see §4.1);

• Three different performance measures (AR, MRE,
PRED(25): see §4.2);

4.1 Randomized Trials

Recall that TEAK uses a randomized method for sub-
tree pruning. Any evaluation of such a randomized
method must be repeated multiple times. Appealing to
the central limit theorem, we used twenty repeats.

• Twenty times, for each data set, we randomize the
order of the rows in that data set.

• Next, we conducted both a Leave-One-Out study
and a 3-way cross-validation study.

In Leave-One-Out, given T projects, then ∀t ∈ T , use
t as the test project and the remaining T − 1 projects
for training. In 3-way cross-validation, the data set of T
projects is divided into three bins, bini is used for testing
while the remaining T−bini projects are used for testing.

Since some of our data sets are very small (e.g. the 24
instances of Cocomo81o), we used a 3-way cross vali-
dation (and not the 10-way used by, say, Quinlan [57]).
Some thought was given to using 3-way for small data
sets and 10-way for larger data sets. However, this would
introduce a complication into the analysis that is neither
recommended by the literature, nor handled by any
statistical technique that we are aware of.

We use both Leave-one-out and N-way cross-
validation since the effort estimation literature is am-
biguous on which is most appropriate. In the Kitchen-
ham et al. survey [7], all the projects reviewed in their
Table 3 used N-way cross-validation. However, other
prominent studies prefer leave-one-out [22].

For these studies, we used all independent features
when computing similarities. We applied twenty ran-
domized trials using the 448 projects from 10 data sets of

Figure 4 (for notes on this data, see the document avail-
able at http://bit.ly/feimyA). In all, these randomized
trials generated a total of 8,990 training/test set pairs,
where 20*448=8,960 of the pairs come from Leave-One-
Out and another 10*3=30 pairs come from 10*3-way.

4.2 Details
For each of these 8,990 pairs of training/test, estimates
were generated by TEAK, neural networks, regression,
and six other ABE0 variants:

• Five variants returned the median effort seen in the
k-th nearest neighbors for k ∈ {1, 2, 4, 8, 16}.

• The other variant returned the median effort seen in
k neighbors found using Baker’s Best(K) procedure.
From §2.5, recall that Best(K) adjusts k to each data
set by reflecting over all the training projects.

• For notes on regression and NNet please see section
2.3.

Since this is paired data (same train and test data passed
through multiple treatments), we applied a Wilcoxon
signed rank test (95% confidence) to rank the resulting
estimates. Ranked6 statistical tests like the Wilcoxon are
useful if it is not clear that the underlying distributions
are Gaussian [58]. Because, ranked statistics mitigate
the problem of effort estimation results that sometimes
contain a small number of very large errors [59].

We collected information on three performance met-
rics: AR, MRE, PRED(25). The magnitude of the absolute
residual (AR) is computed from the difference between
predicted and actual:

AR = |actuali − predictedi| (4)

We prefer AR to other performance measures since we
share Shepperd’s concern [60] that anything other than
the simplest evaluation statistic can introduce analysis
issues. Nevertheless, other measures are more common
in the effort estimation literature (e.g. see Table 3 of [7])
such as MRE and PRED(25). MRE is the magnitude of
the relative error. It is calculated by expressing AR as a
ratio of the actual prediction:

MRE =
|actuali − predictedi|

actuali
(5)

6. In a ranking analysis, the raw results (10.2,21.3,22.1,24,25,30,100)
are replaced with their ranks in the sort order; i.e. (1,2,3,4,5,6,7).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 10

wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if WILCOXON(Pi, Pj) says they are the same then

tiei = tiei + 1;
tiej = tiej + 1;

else
if median(Pi) < median(Pj) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 5: Pseudocode for win-tie-loss calculation between
variant i and j with performance measures Pi and Pj .
Note here that only for Pred(25) the comparison is based
on actual values (Pred(25)i, Pred(25)j) rather than me-
dian values (median(Pi), median(Pj)).

AR and MRE are calculated for every item in a test
set. PRED(X), on the other hand, is a summary statistic
that reports behavior over an entire test suite. PRED(X)
reports the average percentage of the N estimates in the
test set that were within X% of the actual values: For
example, PRED(30)=50% means that half the estimates
are within 30% of the actual value. Chulani & Boehm
assesses his models using PRED(30) [61]. We use the
stricter criteria of PRED(25) since that is more common
in the literature; e.g. [17], [33], [62].

In order to summarize the results of the Wilcoxon
comparisons of the MRE, AR, PRED(25) measures, we
use the following win-tie-loss procedure. For each itera-
tion of the randomized trials, each data set generated
20*7=140 (MRE, PRED(25), AR) distributions for each
induced prediction system (neural nets, regression, the
ABE0 variants). To calculate the win-tie-loss values, we
first checked if two distributions i, j are statistically
different according to the Wilcoxon test. If not, then we
incremented tiei and tiej . On the other hand, if they
turned out to be different, we updated wini, winj and
lossi, lossj after a numerical comparison of their median
values. The pseudocode for win-tie-loss calculation is
given in Figure 5.

In median and mean performance measures used in
other studies (see Table 3 of [7]), the entire distribution
is summarized by its central tendency (measured in
terms of median or mean), then two methods are
compared solely in terms of those two central points.
On the approach of Figure 5 on the other hand, with
the use of Wilcoxon the variance around centrality is
also considered, which is not the case with single-point
assessment methods. Such single point assessments
are also deprecated in literature; e.g. see Foss et al.’s
scathing critique of mean MRE [63]. Therefore, we adopt
the approach of Figure 5 over single-point assessments.

Data set Variant Win Tie Loss Win - Loss
Cocomo81 TEAK 87 73 0 87

Best(K) 49 110 1 48
k=16 42 107 11 31
k=8 41 100 19 22
k=4 28 96 36 -8

NNet 37 76 47 -10
k=1 28 88 44 -16
k=2 26 82 52 -26
LR 7 18 135 -128

Cocomo81e TEAK 55 105 0 55
NNet 43 117 0 43

k=8 32 126 2 30
k=16 32 126 2 30

Best(K) 32 126 2 30
k=4 18 113 29 -11
k=1 8 97 55 -47
k=2 4 101 55 -51
LR 11 59 90 -79

Cocomo81o TEAK 136 0 24
k=16 9 151 0 9
k=8 8 152 0 8

Best(K) 8 152 0 8
NNet 9 150 1 8

k=4 7 151 2 5
LR 7 145 8 -1

k=2 2 128 30 -28
k=1 1 125 34 -33

Nasa93c5 TEAK 40 120 0 40
LR 25 135 0 25

k=16 17 141 2 15
Best(K) 17 139 4 13

k=8 16 134 10 6
NNet 10 144 6 4

k=4 10 127 23 -13
k=2 7 110 43 -36
k=1 3 100 57 -54

SDR TEAK 67 93 0 67
k=1 43 97 20 23

NNet 25 123 12 13
k=4 26 118 16 10
k=8 18 132 10 8
k=2 20 126 14 6

Best(K) 16 126 18 -2
k=16 13 120 27 -14

LR 0 49 111 -111
ISBSG-Banking TEAK 30 130 0 30

NNet 24 136 0 24
LR 23 137 0 23

k=16 22 138 0 22
k=8 19 141 0 19

Best(K) 21 137 2 19
k=4 14 112 34 -20
k=1 8 106 46 -38
k=2 4 73 83 -79

Nasa93 LR 72 88 0 72
TEAK 26 134 0 26
NNet 16 143 1 15
k=16 13 133 14 -1
k=8 15 128 17 -2

Best(K) 14 128 18 -4
k=4 6 122 32 -26
k=2 4 113 43 -39
k=1 6 107 47 -41

Nasa93c2 LR 158 2 0 158
TEAK 36 106 18 18

k=16 25 115 20 5
NNet 17 123 20 -3

k=8 15 116 29 -14
Best(K) 15 116 29 -14

k=4 11 101 48 -37
k=2 5 95 60 -55
k=1 6 90 64 -58

Desharnais LR 63 97 0 63
NNet 51 109 0 51

TEAK 37 121 2 35
k=16 25 129 6 19
k=8 22 124 14 8

Best(K) 16 120 24 -8
k=4 14 116 30 -16
k=2 6 80 74 -68
k=1 1 74 85 -84

Fig. 6: MRE based win-loss-tie results from the 20*Leave-
One-Out experiments. For each data set results are sorted
by win minus loss values. Gray cells indicate variants
with zero losses. The performance of the various induced
prediction systems is summarized in top-left corner of
Figure 7

.

4.3 Results
Initially, our intention was to report results using all the
data sets of Figure 4. However, we found that the Al-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 11

20 * LEAVE-ONE-OUT

TE
A

K

LR N
N

et

Be
st

(K
)

k=
1

k=
16

k=
2

k=
4

k=
8

MRE
Cocomo81 !
Cocomo81e !
Cocomo81o !
Nasa93 !
Nasa93c2 !
Nasa93c5 !
Desharnais !
Sdr !
ISBSG-Banking !
Count 6 3 0 0 0 0 0 0 0
Pred(25)
Cocomo81 !
Cocomo81e !
Cocomo81o !
Nasa93 !
Nasa93c2 !
Nasa93c5 !
Desharnais !
Sdr !
ISBSG-Banking !
Count 5 3 1 0 0 0 0 0 0
AR
Cocomo81 !
Cocomo81e !
Cocomo81o !
Nasa93 !
Nasa93c2 !
Nasa93c5 !
Desharnais !
Sdr !
ISBSG-Banking !
Count 6 3 0 0 0 0 0 0 0

20 * 3-WAY CROSS-VALIDATION

TE
A

K

LR N
N

et

Be
st

(K
)

k=
1

k=
16

k=
2

k=
4

k=
8

MRE
Cocomo81 !
Cocomo81e !
Cocomo81o !
Nasa93 !
Nasa93c2 !
Nasa93c5 !
Desharnais !
Sdr !
ISBSG-Banking !
Count 6 3 0 0 0 0 0 0 0
Pred(25)
Cocomo81 !
Cocomo81e !
Cocomo81o !
Nasa93 !
Nasa93c2 !
Nasa93c5 !
Desharnais !
Sdr !
ISBSG-Banking !
Count 5 3 1 0 0 0 0 0 0
AR
Cocomo81 !
Cocomo81e !
Cocomo81o !
Nasa93 !
Nasa93c2 !
Nasa93c5 !
Desharnais !
Sdr !
ISBSG-Banking !
Count 6 3 0 1 0 0 0 0 0

Fig. 7: Summary of the random trials; e.g. Figure 6 is summarized top-left in “MRE”. This figure displays the
top performing inducted predictive system, measured via (win − loss). This is repeated for all the performance
measures (MRE, PRED(25), AR) and both experimental rigs (leave-one-out on the left and 3-way cross-validation
on the right). The last row of each table shows the sum of times a method appeared as the top performing variant.
In the majority of cases, TEAK appears as the top-ranked predictive system.

brecht data set was producing a very large number of ties
(over 98%). On closer inspection, we found that in our
rig, Albrecht was a data set in which all our treatments
generated very similar results (the plots of the MREs
generated by our eight methods was indistinguishable).
Since Albrecht was mostly unable to distinguish between
the different treatments, we excluded it from the rest of
our analysis.

The resulting Win/Loss/Ties values from a Leave-
One-Out study that measured MRE are shown in Fig-
ure 6. When ranked in terms of win − loss, in 6

9 data
sets, TEAK is the top ranked method; i.e it always ranked
first on that performance score. The next best method
was linear regression that is found in the top rank in
only 3

9 data sets.
These scores are summarized top left of Figure 7 (see

the tables for “MRE”). There is not enough space in
this article to repeat Figure 4 for every combination of
(Leave-One-Out, Cross-Val)*(MRE, AR, PRED(25)); i.e.
six times in all. Hence, we present a summary of those
results in Figure 7. In all cases:

1) Best(K) and K ∈ {1, 2, 4, 8, 16} rarely appeared in
the top ranked methods. That is, standard anal-
ogy selection mechanism performed comparatively
worse than applying TEAK’s variance heuristic.

2) While non-analogy methods sometimes did better
on certain data sets, overall, TEAK’s extension
to analogy-based reasoning was competitive with

non-analogy methods.
From result 1), we recommend variance pruning for
analogy estimation since unequivocally, of all the anal-
ogy variants studied here, TEAK is the superior system.

As to result 2), we hesitate to conclude, just from
this sample, that TEAK is always the best effort esti-
mation method. However, its results are encouraging
and should motivate continued research into analogy-
based methods. In our review of effort estimation [9],
we commented that best practices include generating
estimates from multiple sources. Certainly, these results
offer no reason to exclude analogy as one of those sources.

4.4 But Why Does it Work?
In discussions over TEAK, we are sometimes asked if
it is wise to use variance to assess the suitability of
neighborhood for providing donor cases. The argument
goes as follows: While a high variance for a given
neighborhood of k suggests that this is a bad neighbor-
hood, a low variance does not necessarily imply that the
neighborhood is good.

In reply, we note that TEAK does not only use vari-
ance to select the donor cases. TRAVERSE2 pushes away
from regions with high variance while pushing towards
regions with similar features to the test instance. TRA-
VERSE2 pushes away from high variance regions since:

• It executes over a space of training data which high
variance regions pruned away;

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 12

• Its recursive descent terminates if it enters a region
of increasing variance.

At the same time, TRAVERSE2 pushes towards regions
with similar features as follows:

• It descends a binary tree of clusters.
• At each step, the test instance is moved towards the

sub-tree whose Euclidean distance is closest to the
test instance.

The above experiments show, we argue, that this policy
does better than just pushing towards regions with
higher similarity. That is, augmenting nearest neighbor
algorithms with variance avoidance does better than just
applying nearest neighbor.

4.5 Threats to Validity
Internal validity questions to what extent the cause-effect
relationship between dependent and independent vari-
ables hold [64].

The general internal validity issue is that data mining
experiments (like those discussed above) do not collect
new data, but only generates theories from historical
data. Ideally, we should take a learned theory and apply
it to some new situation, then observe if the predicted
effect occurs in practice. Note that if no explicit theory
is generated, then it cannot be be applied outside of the
learning system. That is, all ABE systems suffer from
issues of internal validity since they do not generate an
explicit theory. However, it is possible to mitigate this
problem by simulating how an ABE system might be
applied to a new situation. Note that the Leave-One-Out
approach used in this paper generates estimates using
test data that is not used in training.

Construct validity (i.e. face validity) assures that we
are measuring what we actually intended to measure
[65]. In our research we are using a variety of per-
formance measures (AR, MRE, PRED(25) and a pair
of evaluation experiments (leave-one-out and cross-val).
This was done to increase the construct validity of this
study. MRE is widely used for assessing the performance
of competing software effort estimation models [63],
[66], [67]. Foss et al. [63] have provided an extensive
discussion demonstrating that by using only MRE itself
may be leading to incorrect evaluation. Hence, we take
care to apply multiple performance measures and a pair
of evaluation experiments.

External validity is the ability to generalize results
outside the specifications of that study [68]. To ensure
the generalizability of our results, we studied a large
number of projects. Our datasets contain a wide diversity
of projects in terms of their sources, their domains and
the time period they were developed in. For example,
we used datasets composed of software development
projects from different organizations around the world to
generalize our results [69]. Our reading of the literature
is that this study uses more project data, from more
sources, than numerous other papers. All the papers we
have read, as well as, Table 4 of [7] list the total number

of projects in all data sets used by other studies. The
median value of that sample is 186, which is less than
half the 448 projects used in our study.

4.6 Future Work
In this paper, we have applied the easy path principle
to design a new method for case & analogy selection.
In future work, we will apply the easy path to similarity
measures, feature weighting, and adaption. For example:

• After grouping together rows with similar esti-
mates, we might weight features by their variance
within each group (and higher variance means
lower weight).

• Alternatively, Lipowezky [49] observes that feature
and case selection are similar tasks (both remove
cells in the hypercube of all cases times all columns).
Under this view, it should be possible to convert our
case selector to a feature selector.

Our investigations in this area are very preliminary and,
at this time, we have no conclusive results to report.

Another promising avenue to explore is variations
on the GAC clustering. Since our results have so far
been quite promising, we have not explored alternatives
to GAC. For example, we form links between quite
distinct clusters merely because they have the minimum
average-linkage-clustering (mean value of the distance
between instances in each cluster). Perhaps another,
more sophisticated, clustering algorithm would be a
better way to group data.

5 CONCLUSION

In response to the growing number of options for de-
signing software effort estimators, various researchers
(e.g. [9], [10], [12]) have proposed elaborate and CPU-
intensive search tools for selecting the best set of design
options for some local data. While useful, these tools
offer no insight into the effort estimation task: They
report what the design is in simplifying future effort
estimation tasks, but not why they were useful. Such
insights are useful for reducing the complexity of future
effort estimations.

In order to avoid the computation cost of these tools,
and to find the insights that simplify effort estimation,
we design TEAK using an easy path principle. The easy
path has five steps.

1. Select a prediction system: Analogy-based effort esti-
mation, or ABE, is a widely-studied method that works
on sparse data sets. Hence, we selected ABE as our
prediction system.

2. Identify the predictor’s essential assumption(s): The
essential assumption of ABE is that locality implies ho-
mogeneity (for k > 1); i.e. the closer the test project
approaches the training projects, the smaller the variance
in that neighborhood.

3. Recognize when those assumption(s) are violated: Math-
ematically, this can be tested by recursively clustering

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 13

project data into a tree whose leaves contain historical
effort data and whose internal nodes are medians of
pairs of child nodes. When descending this tree, the
essential ABE assumption is violated when sub-trees
have a larger variance than the parents.

4. Remove those situations: This assumptions can be
removed by pruning sub-trees with the larger variances.

5. Execute the modified prediction system: TEAK builds a
second tree of clusters using just the projects not found
in high variance sub-trees. Estimates are generated from
this second tree by a recursive descent algorithm that
stops before the sub-tree variance is higher than the
super-tree variance. The leaves of terminating sub-tree
are then accessed and the estimate is calculated from
the median of the effort values in those leaves.

A pre-experimental concern with the easy path was
that, in ignoring the hard training cases, we would miss
important aspects of the data. Our experiments do not
support that concern. TEAK never lost against other
ABE methods and always won the most. Also, TEAK
performed at least as well (if not better) than certain
other non-analogy-based estimation methods.

Our conclusions are two-fold:
• For those using analogy-based estimation, we

strongly recommend pruning instances from regions
of high variance prior to generating estimates.

• For those designing new data algorithms, we con-
clude that it may be detrimental to obsess on the
hard cases. Rather, it may be better to enhance
what a predictor does best. For example, in the
case of ABE, case selection via variance significantly
improved the estimates.

REFERENCES

[1] B. W. Boehm, Software Engineering Economics. Prentice Hall PTR,
1981.

[2] C. Kemerer, “An empirical validation of software cost estimation
models,” Comm. of the ACM, vol. 30, pp. 416–429, May 1987.

[3] Spareref.com, “Nasa to shut down checkout & launch control
system,” August 26, 2002, http://bit.ly/eiYxlf.

[4] B. Boehm, C. Abts, and S. Chulani, “Software development cost
estimation approaches - a survey,” Annals of Software Engineering,
vol. 10, pp. 177–205, 2000.

[5] M. Jorgensen and M. Shepperd, “A systematic review of software
development cost estimation studies,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 33–53, 2007.

[6] M. Shepperd, “Software project economics: a roadmap,” in Future
of Software Engineering, 2007, pp. 304–315.

[7] B. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus
within-company cost estimation studies: A systematic review,”
IEEE Trans. Softw. Eng., vol. 33, no. 5, pp. 316–329, 2007.

[8] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl,
“Optimal project feature weights in analogy-based cost esti-
mation: Improvement and limitations,” IEEE Trans. Softw. Eng.,
vol. 32, pp. 83–92, 2006.

[9] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting best practices
for effort estimation,” IEEE Trans. Softw. Eng., vol. 32, pp. 883–895,
2006.

[10] D. Baker, “A hybrid approach to expert and model-based effort
estimation,” Master’s thesis, LCSEE, West Virginia University,
2007, available from http://bit.ly/hWDEfU.

[11] E. Mendes, I. D. Watson, C. Triggs, N. Mosley, and S. Counsell, “A
comparative study of cost estimation models for web hypermedia
applications,” Emp.Softw. Eng., vol. 8, no. 2, pp. 163–196, 2003.

[12] Y. Li, M. Xie, and T. Goh, “A study of project selection and feature
weighting for analogy based software cost estimation,” Journal of
Systems and Software, vol. 82, pp. 241–252, 2009.

[13] J. R. Quinlan, “Boosting first-order learning,” in 7th International
Workshop on Algorithmic Learning Theory, ser. LNAI, vol. 1160.
Berlin: Springer, 1996, pp. 143–155.

[14] T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum, “Stable
rankings for different effort models,” ASE, no. 4, December 2010.

[15] F. Walkerden and R. Jeffery, “An empirical study of analogy-based
software effort estimation,” Empirical Softw. Engg., vol. 4, no. 2, pp.
135–158, 1999.

[16] C. Kirsopp, M. Shepperd, and R. Premraj, “Case and feature
subset selection in case-based software project effort prediction,”
Intl. Conf. on Knowledge-Based Sys. and Applied A.I., 2003.

[17] M. Shepperd and C. Schofield, “Estimating software project effort
using analogies,” IEEE Trans. Softw. Eng., vol. 23, no. 11, pp. 736–
743, 1997.

[18] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort estimation
using analogy,” in ICSE ’96, 1996.

[19] G. Kadoda, M. Cartwright, and M. Shepperd, “On configuring
a case-based reasoning software project prediction system,” UK
CBR Workshop, Cambridge, UK, pp. 1–10, 2000.

[20] J. Li and G. Ruhe, “Analysis of attribute weighting heuristics
for analogy-based software effort estimation method aqua+,”
Empirical Softw. Engg., vol. 13, pp. 63–96, February 2008.

[21] ——, “A comparative study of attribute weighting heuristics for
effort estimation by analogy,” ISESE’06, p. 74, 2006. [Online].
Available: http://bit.ly/e9yCTR

[22] ——, “Decision support analysis for software effort estimation by
analogy,” in PROMISE ’07: Proceedings of the Third International
Workshop on Predictor Models in Software Engineering, 2007, p. 6.

[23] J. W. Keung, “Empirical evaluation of analogy-x for software cost
estimation,” in ESEM ’08, 2008, pp. 294–296.

[24] J. W. Keung, B. A. Kitchenham, and D. R. Jeffery, “Analogy-
x: Providing statistical inference to analogy-based software cost
estimation,” IEEE Trans. Softw. Eng., vol. 34, pp. 471–484, 2008.

[25] J. W. Keung and B. Kitchenham, “Experiments with analogy-x for
software cost estimation,” in ASWEC ’08, 2008, pp. 229–238.

[26] B. Nuseibeh, “To be and not to be: On managing inconsistency in
software development,” in Proc. of 8th IEEE International Workshop
on Software Specification & Design (IWSSD-8), 1996, pp. 164–169.

[27] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. J. Reifer, and B. Steece, Software Cost
Estimation with Cocomo II. Prentice Hall PTR, 2000.

[28] M. Jorgensen, “A review of studies on expert estimation of
software development effort,” Journal of Systems and Software,
vol. 70, pp. 37–60, 2004.

[29] M. Jorgensen and T. Gruschke, “The impact of lessons-learned
sessions on effort estimation and uncertainty assessments,” IEEE
Trans. Softw. Eng., vol. 35, no. 3, pp. 368–383, May-June 2009.

[30] M. Shepperd and G. F. Kadoda, “Comparing software prediction
techniques using simulation,” IEEE Trans. Softw. Eng., vol. 27,
no. 11, pp. 1014–1022, 2001.

[31] H. Park and S. Baek, “An empirical validation of a neural network
model for software effort estimation,” Expert Syst. Appl., vol. 35,
no. 3, pp. 929–937, 2008.

[32] A. Venkatachalam, “Software cost estimation using artificial neu-
ral networks,” in International joint conference on neural networks,
1993, pp. 987–990.

[33] G. Wittig and G. Finnie, “Estimating software development effort
with connectionist models,” Information and Software Technology,
vol. 39, no. 7, pp. 469–476, 1997.

[34] Y.-C. H. Arthur Earl Bryson, Applied optimal control: Optimization,
estimation, and control. New York: Hemisphere Pub. Corp., 1969.

[35] D. E. Rumelhart, L. McClelland, James, and the PDP Re-
search Group, Parallel distributed processing: explorations in the
microstructure vol. 2. MIT Press, 1986.

[36] B. Kitchenham and E. Mendes, “Why comparative effort predic-
tion studies may be invalid,” in PROMISE ’09. ACM, 2009, pp.
1–5.

[37] M. Hall and G. Holmes, “Benchmarking attribute selection tech-
niques for discrete class data mining,” IEEE Transactions On
Knowledge And Data Engineering, vol. 15, no. 6, pp. 1437–1447,
2003.

[38] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison Wesley, 2005.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 14

[39] J. C. Gower and P. Legendre, “Metric and euclidean properties of
dissimilarity coefficients,” Journal of Classification, vol. 3, 1986.

[40] J. Li, G. Ruhe, A. Al-Emran, and M. M. Richter, “A flexible method
for software effort estimation by analogy,” Empirical Softw. Engg.,
vol. 12, no. 1, pp. 65–106, 2007.

[41] C. Chang, “Finding prototypes for nearest neighbor classifiers,”
IEEE Trans. on Computers, pp. 1179–1185, 1974.

[42] J. Gama and C. Pinto, “Discretization from data streams: appli-
cations to histograms and data mining,” in Symposium on Applied
Computing, 2006, pp. 662–667.

[43] U. M. Fayyad and I. H. Irani, “Multi-interval discretization of
continuous-valued attributes for classification learning,” in Inter-
national Joint Conference on A. I., 1993, pp. 1022–1027.

[44] Y. Yang and G. I. Webb, “A comparative study of discretization
methods for naive-bayes classifiers,” in Pacific Rim Knowledge
Acquisition Workshop, 2002, pp. 159–173.

[45] E. Frank, M. Hall, and B. Pfahringer, “Locally weighted naive
bayes,” in Proceedings of the Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann, 2003, pp. 249–256.

[46] L. Angelis and I. Stamelos, “A simulation tool for efficient analogy
based cost estimation,” Emp. Softw. Engg., vol. 5, pp. 35–68, 2000.

[47] J. R. Quinlan, “Learning with Continuous Classes,” in Joint Con-
ference on A. I., 1992, pp. 343–348.

[48] Y. Li, M. Xie, and G. T., “A study of the non-linear adjustment
for analogy based software cost estimation,” Emp. Softw. Eng., pp.
603–643, 2009.

[49] U. Lipowezky, “Selection of the optimal prototype subset for 1-nn
classification,” Pattern Recog. Letters, vol. 19, pp. 907–918, 1998.

[50] C. Kirsopp and M. Shepperd, “Making inferences with small
numbers of training sets,” Software, IEE Proceedings -, vol. 149,
no. 5, pp. 123 – 130, Oct. 2002.

[51] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and valid-
ity in comparative studies of software prediction models,” IEEE
Trans. Softw. Eng., vol. 31, no. 5, pp. 380–391, May 2005.

[52] D. Beeferman and A. Berger, “Agglomerative clustering of a
search engine query log,” In Knowledge Discovery and Data Mining,
pp. 407–416, 2000.

[53] S. Guha, R. Rastogi, and K. S. Cure, “An efficient clustering algo-
rithm for large databases,” ACM SIGMOD International Conference
on Management of Data, vol. pages, pp. 73–84, 1998.

[54] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,” Proc.
of the National Academy of Science, vol. 95, pp. 14 863–14 868, 1998.

[55] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of docu-
ment clustering techniques,” in KDD Workshop on Text Mining’10.

[56] E. P. Kasten and P. K. McKinley, “Meso: Supporting online de-
cision making in autonomic computing systems,” IEEE Trans. on
Knowl. and Data Eng., vol. 19, no. 4, pp. 485–499, 2007.

[57] R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kauf-
man, 1992, iSBN: 1558602380.

[58] J. Kliijnen, “Sensitivity analysis and related analyses: a survey of
statistical techniques,” Journal Statistical Computation and Simula-
tion, vol. 57, no. 1–4, pp. 111–142, 1997.

[59] T. Menzies and S. Goss, “Vague models and their implications
for the kbs design cycle,” in PKAW ’96: Technical Report, 1996,
available from http://bit.ly/gukExS.

[60] M. Shepperd, “Personnel communication on the value of different
evaluation criteria,” 2007.

[61] S. Chulani, B. Boehm, and B. Steece, “Bayesian analysis of empir-
ical software engineering cost models,” IEEE Trans. Softw. Eng.,
vol. 25, no. 4, pp. 573–583, 1999.

[62] G. Boetticher, “When will it be done? the 300 billion dollar
question, machine learner answers,” IEEE Intelligent Systems, 2003.

[63] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simula-
tion study of the model evaluation criterion mmre,” IEEE Trans.
Softw. Eng., vol. 29, no. 11, pp. 985 – 995, November 2003.

[64] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2004.
[65] C. Robson, “Real world research: a resource for social scientists

and practitioner-researchers,” Blackwell Publisher Ltd, 2002.
[66] Y. Wang, Q. Song, S. MacDonell, M. Shepperd, and J. Shen,

“Integrate the gm(1,1) and verhulst models to predict software
stage-effort,” IEEE Trans. on Systems, vol. 39, pp. 647 – 658, 2009.

[67] L. C. Briand, K. El Emam, D. Surmann, I. Wieczorek, and K. D.
Maxwell, “An assessment and comparison of common software
cost estimation modeling techniques,” in ICSE ’99: International
conference on Software engineering, 1999, pp. 313–322.

[68] D. Milic and C. Wohlin, “Distribution patterns of effort estima-
tions,” in Euromicro, 2004.

[69] A. Bakir, B. Turhan, and A. Bener, “A new perspective on
data homogeneity in software cost estimation: A study in
the embedded systems domain,” Software Quality Journal, 2009.
[Online]. Available: http://bit.ly/fp4b9N

Ekrem Kocaguneli holds an MSc and BS de-
grees in Computer Engineering from Bogazici
University. Ekrem is a PhD candidate in CSEE
at West Virginia University. His main research
interests are software effort estimation, artificial
intelligence applications in empirical software
engineering and intelligent tools to aid software
processes. He is currently a student member of
IEEE and ACM.

Tim Menzies (P.hD, UNSE) is an Assoc. Prof.
in CSEE at WVU and the author of over 200
referred publications. At WVU, he has been a
lead researcher on projects for NSF, NIJ, DoD,
NASA’s Office of Safety and Mission Assur-
ance, as well as SBIRs and STTRs with private
companies. He teaches data mining and arti-
ficial intelligence. Tim is the co-founder of the
PROMISE conference series devoted to repro-
ducible experiments in software engineering. In
2012, he will be the co-chair of the program

committee for the IEEE Automated Software Engineering conference.

Ayse Basar Bener (PhD, LSE) is currently a
Prof. in the Ted Rogers School of Information
Technology Management at Ryerson University.
Prior to joining Ryerson Dr. Bener founded and
directed Software Research Lab (Softlab) at
Bogazici University where many industry funded
research projects were undertaken locally and
globally. Her main research area is empirical
software engineering: software measurement,
software economics, and software quality. She
mainly tackles the problem of decision making

under uncertainty by using machine learning methods to build predic-
tive models, cognitive science to model human behaviour and game
theoretic models to determine strategies. She has more than 100
publications in these fields. She is a member of IEEE, ACM, and AAAI.

Jacky W. Keung (PhD, UNSW) is an Asst.
Prof. in the Department of Computing at the
Hong Kong Polytechnic University. Prior to join-
ing PolyU, he was a Senior Research Scientist
in the Software Engineering Research Group at
NICTA. He also holds an academic position in
the School of Computer Science and Engineer-
ing at the University of New South Wales. His
current research interests are in software engi-
neering for cloud computing, machine learning,
data-intensive pattern analysis, software mea-

surement and its application to project management, cost estimation,
quality control and risk management, as well as software process
improvement. His research results have been published in top quality
journals and conferences, including IEEE Transactions on Software
Engineering. He is a member of the Australian Computer Society, and a
member of the IEEE Computer Society.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

