JOURNAL OF 7?7, VOL. 6, NO. 1, JANUARY 2007

Problems with Precision

Tim Menzies, Member, IEEE, Alex Dekhtyar, Justin Distefano, and Jeremy Greenwald

I. INTRODUCTION

Zhang&Zhang [15] (hereafter, the Zhangs) argue that the low
precision detectors seen in Menzies, Greenwald, and Frank’s paper
Data Mining Static Code Attributes to Learn Defect Predictors [13]
(hereafter, DMP) are “not satisfactory for practical purposes”. They
demand that “a good prediction model should achieve both high
Recall and high Precision” (which we will denote as “high preci-
sion&recall”). All other detectors, they argue, “may lead to imprac-
tical prediction models”.

We have a different view and this short note explains why. While
we disagree with the Zhangs’ conclusions, we find that their derived
equation is an important result. The insightful feature of the Zhangs’
equation is that it can use information about the problem at hand
to characterize the pre-conditions for high precision and high recall
detectors. To the best of our knowledge, no such characterization has
been previously reported (at least, not in the software engineering
literature).

II. PRECISION INSTABILITY

Precision instability is the real reason that we do not assess
performance in terms of precision. But precision instability was not
discussed in the DMP paper. Hence, the Zhangs’ are right to complain
about our selection of assessment criteria.

We first detected precision instability in several NASA data sets. If
a researcher wants to demonstrate that detector generator A is better
than method B, then they must measure the performance of A and
B, under a variety of treatments. Figure 1 shows one such study [14]
where different learners (e.g. M5’, J48, ROCKY, LSR) were:

o Trained on one of five data sets;

o Self-applied on the same training set (to generate a baseline
performance measure);

e Then tested on each of the other four data sets.

The results are shown in Figure 1. On most performance measures,
the detectors were remarkably stable and similar performances were
observed in different data sets. The exception was prec (precision)
which had very large standard deviations when applied to different
data sets. Hence, if detectors were to be assessed in terms of
precision, it would be very difficult to show that method A was better
than B.

Another problem with precision instability is maintainability. It
is important to stabilize a project’s defect detectors so that they
remain viable after release. For example, no project manager wants
to discover that their 80% precise detector is only 25% precise when
a project update is pushed out 3 months later.

We show below that the Zhangs’ equation can explain precision
instability, as well as certain other prior empirical results.

tim@menzies.us (LCSEE, WVU)

dekhtyar@cs.uky.edu (CS, UK)

jdistefano@ismwv.com (Integrated Software Metrics)
jgreen@cs.pdx.edu (CS, PDX)

See http://menzies.us/pdf/07precision.pdf for an earlier draft
of this paper. Manuscript received Feburary 21, 2007; revised March 11, 2007.

III. THE MATHEMATICS OF PRECISION

Let {A, B,C, D} denote the true negatives, false negatives, false
positives, and true positives (respectively) found by a binary detector.
Certain standard measures can be computed from A, B, C, D:

pd = recall = Bé%
pf= o @
prec = precision = 5o
acc = accuracy = AJrg,iigw
selectivity = %
neg/pos = %

The last measure (neg/pos) is most important to the subsequent
discussion. The Zhangs’ equation is derived as follows:

D 1 1

= = = 1
pree=pre 1+ £ 1+ neg/pos-pf/recall 0
which can be rearranged to
1—
pf = 22 (1 —prec) . recall)
neg prec

Note that, in Equation 2, when recall is fixed then false alarm
rate becomes controlled by precision and a fixed constant determined
by the data set being examined; i.e. when (o« = neg/pos) and
recall = 1 then:

1 — prec

pf=«a 3)

prec

From Equation 3, it is clear that for any targeted recall value,
increasing precision requires decreasing false alarm rates; e.g. for
prec € {0.5,0.70,0.9,0.95}, pf becomes {1, 0.43,0.11,0.005}, re-
spectively. The effect is particularly marked for data sets with large
neg/pos ratios (e.g. like the data processed by DMP).

IV. LARGE Neg/Pos RATIOS

A detail not explored by the Zhangs is that many software engi-

neering data sets have extremely large neg/pos ratios. For example:

o In the DMP paper, the data sets studied had neg/pos ratios of
1.04, 7.33, 9, 10.11, 13.29, 15.67, and 249.

« Hayes, Dekhtyar and Sundaram [9] use text mining to find pairs
of connected requirements in a corpus of 220 requirements and
235 design elements (the same CM-1 dataset used in [13]). The
total number of possible links in the dataset is 220 - 235 =
51, 700, while the the ground truth RTM contains 361 links, for
the neg/pos ratio of 51,700/361 = 143.2.

o For an extreme example, Google reports that over 10° web pages
contain the phrase “software” but only one them is the home
page of this journal. Hence, neg/pos for web searching is at
least 10°.

Figure 2 graphs Equation 1 for the DMP neg/pos ratios. Figure 3
does the same, but is restricted to zones of higher precision: only the
surface for 0.5 < prec < 1 is shown. That shadow of the surface on
the bottom plane shows that this zone of high precision, high recall,
and large neg/pos. As neg/pos increases, high recall&precision is
only possible when pf becomes vanishingly small. For example, in
the ranges 0.65 < prec,recall < 0.8, Equation 2 reports that pf
falls into the following ranges:

JOURNAL OF 7?7, VOL. 6, NO. 1, JANUARY 2007

T T T T T
0.5 | T
04 . 8
- i
03 . P : 7
01 1 Ty SRS EN . 1T
c : Ay N L H IEEEE XS O, ODopod T
§ o oofmet e nos 37
| i 1 ! - R} = -
0.1 : ! 44y hd — § 1
n'p:)@? p2EXBOR n2EZT58 n2EE53 w2z $85 8
Geecglgr seEzglod seesglof gwezgind seenghed
T T®E TT®BE TT®BE TT®BE T TBE
03 ¢ IS I3 I3 IS= IT5=
04+ 5§66 5§66 §66 5§66 5§66
PP AT 2> AP AT PP AT PAP AT
X XX X X X X X X X X XX X X X X
05 888 888 888 888 888
1 1 1 1 1
prec acc effort pd pf

Fig. 1.

Mean p and standard deviation o of changes in defect detector statistics between a baseline (tested on the training set) and another data set (tested

on different data). A zero value denotes that the detector worked the same on training and test data. Dots denote mean (u) values. Whiskers extend from
1+ o to i — o. The data sets used in this study had some overlap with the DMP data; i.e. cm1, kcl, kc2, jm1, pc. From [14].

neg/pos =1

neg/pos = 15

recall recall

Fig. 2. The relationship between pd, prec, recall and neg/pos.
neg/pos =1 neg/pos = 15
prec
1
0.5 1
recall
neg/pos =7 neg/pos = 250
prec prec
1 1
0.5 1 0.5 1
recall recall
Fig. 3. Figure 2, cropped to the region where prec > 0.5.

e 0.023 < pf <0.062 for neg/pos = T,

e 0.0108 < pf < 0.0287 for neg/pos = 15;

e 0.007 < pf <0.0017 for neg/pos = 250;
Detectors learned in the domain of software engineering rarely yield
high precision detectors (see Figure 4). Using the Zhangs’ equations,
the reasons for this are very clear:

o Those detectors all try to maximize recall;

o Figure 2 shows that such detectors can only achieve high

precision in the rare case of very low pf.

Not only do the Zhangs’ equation explain the Figure 4 results, they
also inform the the instability of precision and the stability of pf and
pd (recall) seen in Figure 1:

o Note how, in Figure 2, that at very small pf values, tiny changes
in pf can lead to very large changes in prec (sudden jumps from
zero to one).

o The other measures in Figure 2, on the other hand, change far
more smoothly and slowly.

That is, the Zhangs’ equation is the essential theoretical statement

needed to explain numerous prior results such as those shown in
Figure 4 (i.e. [1], [2], [4], [9], [12], [13], [14]).

V. WHEN LOw PRECISION 1S USEFUL

Achieving both high precision& recall can be problematic. As
shown by Zhangs’ equation, optimizing for one often compromises
the other (especially for data sets with large neg/pos ratios). For-
tunately, there are may industrial situations where low precision and

The DMP paper achieved recalls over 70% and minimum false
alarm rates of 15%. Using the Zhangs’ equation and data from
DMP, it can be shown that the DMP precisions were quite low:
{min, median, max} = {2%20%, 70%} (the last number came
from a data set with neg/pos = 1).

Huang et.al. [4] won “best paper” at the 2006 IEEE Require-
ments Engineering conference with detectors exhibiting prec ~
0.25.

Without extensive feedback from human experts, the classifiers
used by Hayes, Dekhtyar, and Sundaram exhibited pf > 0.6
(hence, very low precisions) [9].

Other such as Antoniol et.al. [1], [2] and Marcus et.al. [12]
researchers into software tracability report that high recall is
achievable only with low precision detectors. Antoniol has also
been exploring bug traces in Mozilla components and has found
the same high-precision, low-recall trade-off.

After much experiments with linear regression, model tree
learners, Bayes classifiers, decision tree learners, singleton rule
learners, and some home-brew learners [14], the general trend
is very clear. For those learners, executing on the DMP datasets,
pf < pd — 0.5; That is, for those learners and those data sets,
obtaining high recall figures of pd > 0.6 implies pf > 0.1 and,
consequently, low precision.

Fig. 4. Some low precisions seen in the SE literature.

JOURNAL OF 7?7, VOL. 6, NO. 1, JANUARY 2007

high recall detectors are useful. For example, one of us (DiStefano)
has used our low-precision detectors to review flight code developed
at the NASA Glenn Research Center (Ohio, USA). When the results
of these detectors were presented to the lead flight engineer, he
confirmed that the identified sections (which did not have any
recorded defects) had been problematic to maintain, and contained
several bugs which had not yet been entered into the defect system.

For another example, from outside the field of SE, a user of
commercial web search engine like Google can quickly flick through
(say) three pages of results before finding a page of interest. Google
has so many return customers since even with precisions of (say) %,
the effort involved in looking at a page is so low that users don’t
mind examining 29 false alarms.

More generally, there are several situations where low precision
detectors are useful:

o When the cost of missing the target is prohibitively expensive. In
mission critical or security applications, the goal of 100% recall
may be demanded in all situations, regardless of the precision.

o When only a small fraction the data is returned. Hayes, Dekhy-
tar, & Sundaram call this fraction selectivity and offer an
extensive discussion of the merits of this measure [9].

o When there is little or no cost in checking false alarms. For
example, a detector we have found useful in industrial settings
is to check modules where

li t
ines of comments < 0.25

lines of code

This detector triggers on complex functions that programmers
comment extensively, instead of splitting up into smaller, more
maintainable, functions. This detector is imprecise- it often
triggers on well-written functions with detailed comments. How-
ever, based on commercial experience, we assert that it is fast
and simple for a human agent to inspect the identified modules
and discern which ones were well-written and which were over-
commented to disguise being badly coded. We use this detector
to find code that should be rewritten prior to release.

VI. RESEARCH DIRECTIONS

Just because high precision&recall detectors have not been seen
before in SE does not mean that this goal is impossible. If large
neg/pos ratios are the problem, then perhaps the solution is to change
those ratios in the training data. In “oversampling”, the minority class
(pos) is repeated multiple times. In “under-sampling”, some portion
of the majority class (neg) is discarded. In this way, a training data
set with neg/pos = 1 might be generated. Figure 2 shows that
the space of neg/pos = 1 detectors contains many candidates with
both high precision&recall. However, while a promising technique,
there is contradictory evidence for its value. Yiu reports that the
appropriate re-sampling technique and appropriate classifier is dataset
dependent [3]. In limited studies with one learner and a few data
sets, Drummond & Holte [6] found that oversampling had little
value. They offer some evidence for the value of under-sampling
but concluded that other methods can do better. One issue is that
while re-sampling yields training set contains neg/pos = 1, the test
set still has the original distributions. In any case, this area is ripe
for further exploration.

Another promising direction might be to try boosting. The Ad-
aBoost algorithm [7] builds an ensemble of detectors 1,2,3,... where
detector ¢ is built from problems that were misclassified by detectors
1,2,..,4 — 1. AdaBoost defines a voting procedure for making
conclusions after passing all new test instances to every member of
the ensemble. It can be shown that increasing the size of the ensemble
decreases error [7]. That is, the goal of both high precision&recall

might be achievable using boosting. Curiously, to do so, we require
using detectors that generates enough false alarms to inform the
boosting.

The theoretical advantage of boosting has yet to show significant
improvements in real-world defect data sets (see the modest improve-
ments of [10] or the poor comparative performance of AdaBoost
compared to other methods in [11, p64-77]). Therefore, to address
the Zhangs’ challenge of high precision&recall, we need to look for
other techniques.

Yet another avenue to explore is stacking; i.e. levering the strengths
and weaknesses of different learners in an assembly that does
better than any single learner. For example, Gaddam et.al. achieved
high precision&recall in one data set by combining clustering with
decision tree learning. However, stacking is a poorly understood area
and the behavior of the resulting assembly is difficult to predict.
Gaddam et.al’s toolkit only reached high precision&recall in one
dataset; in several others, it could not [8].

Our final suggestion for how to achieve the Zhangs’ goal is to
augment automatic learning with some user modeling. Starting with
unsupervised learners, it is possible to give learners information about
the top candidate conclusions. A feedback loop can then be entered
as a kind of as iterative supervised learning (results from generation ¢
inform and improve the results at generation ¢+ 1). This methodology
leads to two different things you can measure: (1) the recall/precision
of the current output, or (2) the recall/precision of the list of candidate
conclusions used for learning during multiple iterations:

e In [9], the former is measured and Hayes, Dekhytar, &
Sundaram iteratively refine their learned detectors, transforming
low precision detectors into high precision detectors. In one case
study, the reached precisions and recalls increased over 0.85
(in the current output) after five rounds of users reviewing
and commenting on the learned detectors. The challenge with
this method is that is requires extensive involvement by knowl-
edgeable users- and such users can be a scarce and expensive
resource. Researchers exploring this approach must balance the
benefits of high precision&recall detectors against their high
construction cost.

o In subsequent work [5], Hayes and Dekhytar measured the
recall/precision of the candidates used during multiple iterations.
They found that they were still faced with the same low
precision-high recall trade-off; e.g., to have seen 90% of the
correct candidates, we had to go through a list whose precision
is about 20%.

In summary, while the above techniques show promise, it may take
much further research to achieve high precision&recall detectors in
software engineering data sets with large neg/pos ratios.

VII. CONCLUSION

The Zhangs argue that predictors are useless unless they have high
precison&recall. We have a different view, for two reasons. Firstly,
for SE data sets with large neg/pos ratios, it is often required to
lower precision to achieve higher recall. Secondly, there are many
domains where low precision detectors are useful.

Nevertheless, there is much value in Zhangs’ equation. It is a useful
result that explains numerous prior results such as [1], [2], [4], [9],
[12], [13], [14]. The Zhangs’ equation also explains why precision is
much less stable than other measures. Hence, researchers are advised
not to use precision when assessing their detectors. Other measures
are more stable (i.e. recall (pd) and false alarm rates), especially for
data sets with large neg/pos ratios.

JOURNAL OF 7?7, VOL. 6, NO. 1, JANUARY 2007

[1]

[2

—

[4

=

[5

=

[8

[t

[9

—

[10]

[11]

(12]

[13]

[14]

[15]

REFERENCES

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo.
Recovering traceability links between code and documentation. IEEE
Transactions on Software Engineering, 28(10):970-983, October 2002.
G. Antoniol and Yann-Gael Gueheneuc. Feature identification: A novel
approach and a case study. In JCSM 2005, pages 357-366, 2005.
Alexander Yun chung Liu. The effect of oversampling and under-
sampling on classifying imbalanced text datasets. Master’s thesis,
2004. Available from http://www.lans.ece.utexas.edu/
“aliu/papers/aliu_masters_thesis.pdf.

J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc. The detection and
classification of non-functional requirements with application to early
aspects. In RE 2006, pages 3645, 2006.

A. Dekhtyar, J.H. Hayes, and J. Larsen. Make the most of your time:
How should the analyst work with automated traceability tools? In 3rd
International Workshop on Predictive Modeling in Software Engineering
(PROMISE’2007), 2007.

C. Drummond and R. C. Holte. C4.5, class imbalance, and cost
sensitivity: why under-sampling beats over-sampling. In Workshop on
Learning from Imbalanced Datasets II, 2003.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. JCSS: Journal of Computer
and System Sciences, 55, 1997.

S.R. Gaddam, V.V. Phoha, and K.S. Balagani. K-means+id3: A novel
method for supervised anomaly detection by cascading k-means clus-
tering and id3 decision tree learning methods. IEEE Transactions on
Knowledge and Data Engineering, 19(3), March 2007.

Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sun-
daram. Advancing candidate link generation for requirements tracing:
The study of methods. IEEE Trans. Software Eng, 32(1):4-19, 2006.
T.M. Khoshgoftaar, E. Geleyn, L. Nguyen, and L. Bullard. Cost-sensitive
boosting in software quality modeling. In /EEE Symposium on High
Assurance Software Engineering, volume 00, page 51, Los Alamitos,
CA, USA, 2002. IEEE Computer Society.

Y. Ma. An Empirical Investigation of Tree Ensembles in Biometrics and
Bioinformatics. PhD thesis, January 2007.

A. Marcus and J. Maletic. Recovering documentation-to-source code
traceability links using latent semantic indexing. In Proceedings of the
Twenty-Fifth International Conference on Software Engineering, 2003.
Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static
code attributes to learn defect predictors. I[EEE Transactions on Software
Engineering, January 2007. Available from http://menzies.us/
pdf/06learnPredict.pdf.

Tim Menzies and Justin S. Di Stefano. How good is your blind
spot sampling policy? In 2004 IEEE Conference on High Assurance
Software Engineering, 2003. Available from http://menzies.us/
pdf/03blind.pdf.

H. Zhang and X. Zhangu. Comments on ’data mining static code
attributes to learn defect predictors’. [EEE Transactions on Software
Engineering, September 2007.

