Specialization and Extrapolation of Software Cost Models

Tim Menzies, Portland State, USA
Zhihao Chen, USC, USA
Dan Port, U.Hawaii, USA
Jairus Hihn, JPL, USA

Motivation

"Software costing is a quality issue.”
- Get it wrong and everything suffers; e.g. no $$ for QA

"Most software is costed like the weather." [Boehm, 2000]
- Tomorrow will be like today, times some “deltas”.
- Is it safe to cost new projects via extrapolation of old ones?

"Stop model conflation.”
- As time goes by, most cost models get more elaborate;
- Experience should tell us when to add or PRUNE variables.

Example

Is software complexity a useful cost driver?
- In NASA data sets, CPLX=high (usually);
- No information in this variable;
- Prune it?

Prune rows? (only use data from related projects?)

Specialization

The "wrapper": [Kohavi & John, 1997]
1) Pick a learner;
 • here: LSR (not M5') on log(NUMS)
2) Include some more attributes;
3) Try learning with just those attributes;
4) If better then { Stale = 0 }
 else if (++Stale > 5)
 then {Stale=0; forget last 5 includes}
5) Goto 2)

Why specialize?

Fewer variables
= smaller theories
• more explainable, easier processing.

Many variables are noisy, redundant, under-sampled (e.g. cplx)
• they confuse, rather than clarify, the generalization process.

Lower variance
[Miller 2002]

Better estimates

- Especially for small data sets.
- And small data sets are the industrial norm.

Less variation

- In the learned models.
- 30 * 90% sub-samples of the data
- Leam "effort = β₀ + β₁x₁ + β₂x₂ +.. “
- Plot the β variance:

Conclusion

- For generalization via LSR:
 - no extrapolation without prior specialization.