
SPIP161

SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2003; 8: 000–000 (DOI: 10.1002/spip.161)

Simulations for Very Early
Lifecycle Quality
Evaluations

Research Section
Eliza Chiang1*,† and Tim Menzies2

1 Department of Electrical & Computer Engineering, University of British
Columbia, 2356 Main Mall, Vancouver BC, Canada
2 Lane Department of Computer Science, West Virginia University, PO Box
6109, Morgantown, WV, 26506-6109, USA

Chung et al. have proposed a graphical model that captures the interdependencies between
design alternatives in terms of synergy and trade-offs. This model can assist in identifying
quality/risk trade-offs early in the lifecycle of software development, such as architectural
design and testing process choices. The Chung et al. method is an analysis framework only:
their technique does not include an execution or analysis module. This paper presents a
simulation tool developed to analyze such a model, and techniques to facilitate decision making
by reducing the space of options worth considering. Our techniques combine Monte Carlo
simulations to generate options with a machine learner to determine which option yields the
most/least favorable outcome. Experiments based on the above methodology were performed
on two case studies, and the results showed that treatment learning successfully pinpointed the
key attributes among uncertainties in our test domains. Copyright 2003 John Wiley & Sons,
Ltd.

KEY WORDS: modeling methodology; software process models; requirement engineering; software quality assurance; Monte
Carlo simulation

1. INTRODUCTION

Software system must meet all the functional re-
quirements in order to provide desired function-
alities to users. In addition, it must exhibit extra
non-functional software quality attributes such as

∗ Correspondence to: Eliza Chiang, Department of Electrical &
Computer Engineering, University of British Columbia, 2356
Main Mall, Vancouver BC, Canada
†E-mail: echiang@interchange.ubc.ca
Contract/grant sponsor: NASA; contract/grant number: NCC2-
0979
Contract/grant sponsor: NASA Office of Safety and Mission
Assurance under the Software Assurance Research Program led
by the NASA IV&V Facility

Copyright 2003 John Wiley & Sons, Ltd.

accuracy, security, performance and other business
goals. As there are no clear-cut criteria to deter-
mine whether these goals are satisfied, Chung et
al. (1999) used the notion of softgoals to represent
such goals. Chung et al. also define an entire softgoal
modeling framework, featuring trade-offs and inter-
dependencies between system quality attributes
and design alternatives, but their framework is a
paper design only; if an analyst wants to simu-
late a softgoal system, they face the problem of
simulations across a space of uncertainties intrinsic
to softgoals. For example, an analyst can connect
two softgoals and say (for example) ‘softgoal helps
softgoal2’ where ‘helps’ is the second strongest of
the four qualitative influences defined in a softgoal

Research Section E. Chiang and T. Menzies

framework.1 Analysts find it intuitive to specify
their connection in such a simple qualitative format.
However, qualitative influences (such as ‘helps’) are
subjected to individuals’ beliefs, and are thus prone
to be inconsistent. Our goal, therefore, is to develop
a simulation tool that finds stable conclusions across
inconsistencies within a softgoal framework.

Aside from inconsistent beliefs, another problem
with drawing conclusions from a softgoal frame-
work is the lack of supportive data. In the current
software engineering practice, there are not many
data available on which to perform statistical analy-
sis (Menzies 2001). This is especially true during the
early lifecycle of software development, when deci-
sions are made based on uncertain and subjective
knowledge. In the case of advanced technologies
and systems, there is little past experience to learn
from. Without supportive data, the relevance of
any conclusion drawn from a softgoal framework is
questionable. In spite of this, estimations on the
potential risks and benefits of design decisions
during the earlier requirement phase is essential,
because these early decisions have the most leverage
to influence the development to follow. The softgoal
simulation tool presented in this paper, therefore, is
designed to aid decision making in times such as
early software development lifecycle, a time when
domain knowledge is incomplete and inconsistent.

The premise of our methodology is that within
a large space of uncertainties generated from a
model, there often exist emergent stable properties
(Menzies et al. 2002). If isolated, these properties can
be used to drive a system towards the more/less
preferred direction. In order to find such consistent
behaviors, we apply ‘bounded’ randomness (i.e.
guesses that fall within some defined range) to
handle imprecise knowledge, and utilize Monte
Carlo simulation (Kalos and Whitlock 1986) to
explore a wide range of system behaviors. This
generates a large range of behaviors which must be
analyzed. TAR2 treatment learner, an analytic tool
developed by Hu and Menzies (2001), is employed
to automatically summarize these behaviors and
return recommendations that can drive the system
to some preferred mode. For example, Feather and
Menzies (2002) describe one application that used
formal requirements models written at the NASA
Jet Propulsion Laboratory (JPL) (NASA website, see

1 The qualitative influences defined by Chung et al. (1999) are
‘MAKE’, ‘HELP’, ‘HURT’ and ‘BREAK’.

references) for deep space satellite design. The
formal model could generate a cost and a benefits
figure for each possible configuration of the satellite
(some 1030 options in all). The black dots at the
top figure in Figure 1 show what happens after
30 000 Monte Carlo simulations of that model; note
the very wide range of cost and benefits. After
treatment learning, a small number of constraints
on the satellite configurations were found that, after
30 000 more Monte Carlo simulations, yielded the
black dots at the bottom figure of Figure 1. There
are two important features of these black dots at the
bottom figure. First, compared to the initial black
dots (shown in the top figure), the variance in the
costs and benefits is greatly reduced. Secondly, the
mean value of the costs and benefits are improved,
i.e. reduced cost and higher benefits. The success
of the Feather and Menzies application led to the
speculation that one might understand the space of
options within softgoals via Monte Carlo simulation
and treatment learning.

As for the implementation of the softgoal sim-
ulation tool, it is designed to be lightweight and
highly customizable to different business goals.
Our approach is somewhat different from the
standard simulation methods in the software engi-
neering or process modeling community. Standard
methods include distributed agent-based simula-
tions (Clancey et al. 1996), discrete-event simula-
tion (Harrell et al. 2000, Kelton et al. 2002, Law
and Kelton 2000),2 continuous simulation (also
called system dynamics) (Abdel-Hamid and Mad-
nick 1991, Stermar 2000) and state-based simulation
(which includes Petri net and data flow approaches)
(Akhavi and Wilson 1993, Harel 1990, Martin and
Raffo 2000); our methods are closer to logic-based
(Bratko 2001, chapter 20), or rule-based simulations
(Mi and Scacchi 1990). In our approach:

• A model is defined that is a set of logical
constraints between variables.

• A solution is generated from that model that
satisfies those constraints.

In the ideal case, all model constraints can be satis-
fied. However, in the case of models generated from
competing stakeholders, this may not be possible.
Hence, our approach offers a range of operators
which tries to satisfying all, many, or one of a set of

2 See also the http://imaginethatinc.com web site.

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

2

Research Section Early Lifecycle Quality Evaluations

Figure 1. An example of treatment learning results

constraints. The appropriate selection of operators
depends on the business at hand. In the case of
software quality assurance, for example, one might
combine all softgoals within the framework with
logic ANDs to model the strictest quality assurance
scheme,3 or with logic ORs for the loosest. Users may
also use a combination of the available operators to
create a framework that most resembles the actual
system. Examples on how these operators can be
configured to suit individual business needs are pre-
sented in the case studies sections (Sections 3 and 4).

The rest of this paper is organized as follows:
using the Keyword in Context (KWIC) framework

3 Some frameworks may not yield any relevant conclusion when
inferred under the strictest constraint. It is because frameworks
may consist of softgoals that benefit some while harm other
softgoals, and this may prevent the inference engine from
drawing any conclusion if a majority of softgoals need to
be satisficed.

(Shaw and Garlan 1996) as an instructional example,
we first introduce the softgoal framework model
proposed by Chung et al. Second, we present the
inference process adopted by our softgoal simula-
tion tool to execute such model. Third, we explain
how Monte Carlo simulation and TAR2 treatment
learning are coupled to pinpoint consistent proper-
ties within the softgoal framework, properties that
can drive the system toward some preferred state.
Two case studies are presented later in this paper:
the first one is the analysis of the KWIC framework,
a small example which is discussed comprehen-
sively to illustrate our proposed technique; then,
we introduce an advance satellite design project
(SR-1) taken from NASA IV&V Facility as our sec-
ond example. This example demonstrates how our
method can be scaled up to real-world business use.
Experimental results of both case studies and their
implications are also presented. Finally, we summa-
rize the proposed simulation technique and points
to directions for future research.

2. SOFTGOAL MODELING AND
SIMULATION

In this section we outline a novel approach for
system modeling and simulation. This approach
involves the softgoal framework model, Monte
Carlo simulation, and treatment learning (Hu and
Menzies 2001) to analyse and identify influential
properties in the modeled system.

2.1. Softgoal Framework: An Overview

Softgoal framework consists of three types of soft-
goals: the Non-Functional-Requirement (NFR) soft-
goals; the operationalizing softgoals; and the claim soft-
goals. NFR softgoals represent quality requirements
such as ‘time-performance’. Operationalizing soft-
goals comprise possible solutions or design alterna-
tives to achieve the NFR softgoals (e.g. ‘incorporate
javascript in online storefront’). Claim softgoals
argue the rationale and explain the context for a soft-
goal or interdependency link (e.g. a claim may argue
that ‘client-side scripting loads faster’). As there
are no clear-cut criteria for success, NFR softgoals
may not be absolutely achieved, yet they can be

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

3

Research Section E. Chiang and T. Menzies

sufficiently satisficed4 (Simon 1957). NFR softgoals
can have an associated priority. Priority softgoals are
shown in a softgoal framework with exclamation
marks (‘!’, ‘!!’), or critical/veryCritical tex-
tually. Priority specifies how important a softgoal
is to be fulfilled for the success of the system. Con-
tribution represents the interdependency between
softgoals, as well as the influence a (claim) soft-
goal has on an interdependency link.5 Listed in
an increasingly positive magnitude, these con-
tributions include BREAK (‘−−’), HURT (‘−’),
UNKNOWN (‘?’), HELP (‘+’) and MAKE (‘++’).
Contributions can also be combined among multi-
ple softgoals and/or interdependency links through
logic operations such as AND and OR.

The following presents the Keyword in Context
(KWIC) system, a well-known example on software
architectural design, to illustrate how the softgoal
framework models design alternatives and quality
attributes.6

The framework shown in Figure 2 defines the
trade-offs among NFRs and the architectural
design alternatives within the KWIC domain.
The top-level NFR softgoals – Comprehensibility,
Modifiability, Performance, Reusability – are the
quality requirements to be satisficed. The design
alternatives – Shared Data, Abstract Data Type,
Implicit Invocation, Pipes and Filters – populate
the bottom-level as operationalizing softgoals.
The sub-softgoals at the middle-level of the
framework are obtained by decomposing the top-
level NFR softgoals. In Figure 2, for example,
Modifiability considerations for a system are
decomposed into concerns for data representation,
processes and functions. The links from the
operationalizing softgoals to NFR softgoals indicate
the positive/negative impacts for each design
alternatives had among quality factors. For
instance, the implicit invocation regime makes
an architectural design more extensible but
requires more space, thus contributing to the

4 Coined by H. A. Simon (United States social scientist and
economist), ‘satisficed’ is defined as to be satisficed with a min-
imum or merely satisfactory level of performance, profitability
etc., rather than a maximum or optimum level. In the context of
the softgoal framework, a softgoal is said to be satisficed when it
is achieved not absolutely but within acceptable limits.
5 In graphical terms, they are the labels of the arrows between
softgoals.
6 The KWIC framework, taken from Chung et al’s book (1999), is a
graphical expression of the architectural assessment knowledge
from Shaw and Garlan (1996).

corresponding softgoals (‘Extensibility[function]’
and ‘SpacePerformance[system]’), respectively, as
illustrated in Figure 2. Arguments such as ‘expected
size of data is huge’ is used to justify the statement:
‘Pipe & Filter[Target System]’ BREAKS (−−) ‘Space
Performance[System]’, and is represented by Claim
softgoal (‘Claim [c4]’).

In addition, the ‘!!’ symbol associated with the
NFR softgoal ‘Modifiability[Data Rep]’ indicates that
it is a high priority quality attribute to be satis-
ficed. Several other attributes, such as ‘TimePerfor-
mance[System]’, ‘Deletability[Function]’, ‘Updatability
[Function]’, also serve as critical factors for overall
system quality.

The KWIC framework discussed above sets
an example of how softgoal modeling technique
can be applied to other systems to capture the
trade-offs/synergy between quality attributes and
design alternatives. After a softgoal framework is
constructed for the target system, it can be fed to
the softgoal simulation tool for automatic inference
and simulation.

2.2. Inference

Once the softgoal framework is defined, it is then
encoded into text format for automatic inference.7

The methodology for inferring the softgoal frame-
work structure is described in this section.

Each softgoal framework requires a top-level soft-
goal node that represents an abstraction of overall
quality. Each search performed on the framework
generates a consistent ‘world’ – a scenario where
the top-level softgoal is satisficed when a set of
softgoals are satisficed/denied. This ‘world’ can be
different for each search, depending on the topol-
ogy and randomness embedded in the framework
definition. After a ‘world’ is generated, its ‘good-
ness’ is rated by computing the ‘benefit’ and ‘cost’
of this particular ‘world’ based on various user-
configured parameters.

When uncertain qualitative inferences (e.g. HELP,
MAKE) meet, combination logic is required to sum
these influences. Logic operators supported by the
softgoal simulation tool include AND, OR and
ANY. Chaining softgoals with AND imposes the
strictest constraint towards satisficing their par-
ent softgoals, whereas chaining with OR requires

7 See site http://www.ece.ubc.ca/∼elizac/vio/papers.html for
framework encoding scheme and keyword definitions.

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

4

Research Section Early Lifecycle Quality Evaluations

Figure 2. KWIC framework

only one satisficed softgoal to satisfice its parent.
Logic ANY is similar to OR in its satisficing cri-
teria, except that the inference engine would try
to prove more than one of the chained softgoals.8

Different business concerns on a domain can be
addressed by using different combinations of logical
operators in the analysis of softgoal frameworks. We

8 For implementation details, please see site: http://www.
ece.ubc.ca/∼elizac/vio/softgoal/logic operations used in
framework inference.html.

constructed two sample applications, the Rigorous
Quality Assurance and the Weak Quality Assur-
ance Scheme, in our study of the KWIC framework
to demonstrate such capability. Details and experi-
mental results are presented in Section 3.

2.3. Calculation of Cost and Benefit

As mentioned in the previous section, each inference
on the framework results in a cost and benefit score.
To compute these values, qualitative factors such

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

5

Research Section E. Chiang and T. Menzies

as softgoal priorities (‘!’, ‘!!’) and contributions (‘−,
++’) are involved. Numerical values are required to
represent these factors during automatic inference,
yet there is no definition available for quantification.
This section outlines the approach taken by our
simulation tool to handle the calculations of benefit
and cost under such limitation.

2.3.1. Handling Source of Uncertainty within Softgoals
As there is no conventional basis for quantifying
subjective knowledge (e.g. HELP, MAKE), a quan-
tification rule is thus created to state the rankings
of various qualitative strengths. Under this rule, the
mean of all quantified parameters must satisfy some
numerical constraints. A typical quantification rule
is stated below:

0 <= score (‘‘−−′′) <= score (‘‘−′′) <= 1

<= score (‘‘+′′) <= score (‘‘ + +′′) <= 2

A score less than 1 reflects a weakening effect.
Having fixed a (0 . . . 1) range for weakening, a range
between 1 and 2 is used to reflect strengthening of
the influence.

Each score is expressed as a Gaussian with
user-defined mean and variance values. Variances
characterize the score distributions and determine
how much the Gaussians overlap each other. Users
can adjust the variances according to the business
model and the degree of inconsistency of domain
knowledge.9

Cost of each softgoal can be configured as either a
static or random value. We implemented the costs of
all the design alternatives in the KWIC framework
(Section 3) to be static. Randomized cost calculation
is applied to the framework of the SR-1 Project
(Section 4).

As mentioned before, the cost and benefit com-
puted in each inference produce a ‘rating’ on the
‘desirability’ of a particular ‘world’. These ratings,
once obtained by performing the Monte Carlo
process, are used by a treatment learner for clas-
sification. Details on treatment learning are given in
the next section.

9 For more details on benefit/cost implementation, please see site:
http://www.ece.ubc.ca/∼elizac/vio/softgoal/benefit and
cost calculation.html.

2.4. Treatment Learning with TAR2

After the ratings and the corresponding behaviors
of the ‘worlds’ are recorded, we apply treatment
learning to summarize this data. To allow TAR2
treatment learner to classify each ‘world’ accord-
ing to its cost and benefit score, a classification
and ranking scheme is required to map ranges of
costs/benefits to appropriate categories. For the
case study of the KWIC framework, each ‘world’ is
rated based on the following classification scheme.
The ranges of benefit were sub-divided into six
bands – vvlow, vlow, low, high, vhigh and vvhigh
(in increasing magnitude) – whereas cost is sub-
divided by its discrete values (from 0 to 5). Each
band has roughly the same number of samples.
Combining each band of the cost and benefit yields
36 classes (see Table 1 for the ranking function
described). This classification scheme is applied to
both rigorous (Figure 3) and loose (Figure 4) quality
assurance on KWIC framework. This scheme takes
account of both benefit and cost with slight pref-
erence towards lower cost. For example, Cost=zero,
Benefit=vhigh has a higher ranking than Cost=one,
Benefit=vvhigh. Different preference scheme can be
configured for specific business concerns.

For our softgoal simulation tool, TAR2 treatment
learner (Hu and Menzies 2001) is used to perform
data analysis. Base on the class ranking (Table 1),
TAR2 searches the datasets for the candidate
attribute ranges, that is, ranges that are more
common in the highly ranked classes than the other
classes. In the KWIC domain, such a candidate is a
range of design approaches that drive the system
into high quality/low cost, or low quality/high

Figure 3. Settings for KWIC framework

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

6

Research Section Early Lifecycle Quality Evaluations

Figure 4. Logic configuration for rigorous quality assur-
ance scheme

Table 1. Class rankings for KWIC framework

Cost Benefit

vvlow vlow low high vhigh vvhigh

Zero 26 17 10 5 2 1
One 28 19 12 7 4 3
Two 30 21 14 9 8 6
Three 32 23 16 15 13 11
Four 34 25 24 22 20 18
Five 36 35 33 31 29 27

cost if the range of undesirable design options is
of concern. Knowing this range of attributes can
greatly assist in making design decisions, as the
space of considerations is narrowed down to only
the attributes that would assert positive/negative
impacts towards the system.

Prior to the discussion on the case studies in
the next section, we introduce the incremental
treatment learning (Menzies et al. 2002) strategy
that is used in our study of the KWIC framework.
To apply incremental treatment learning, a Monte
Carlo simulator executes and generates datasets on
the softgoal framework model. TAR2 condenses this
dataset to a set of proposed treatments. After some
discussions, users add the approved treatments
as constraints for another round of Monte Carlo
simulation. This cycle repeats until users see no
further improvement.

The next section presents two case studies where
our proposed simulation technique is applied.

3. EXPERIMENTS AND RESULT ON THE
KWIC SYSTEM

As detailed in Section 2, the KWIC framework
models the architectural design alternatives and
quality attributes that are of business concern. The
objective of this experiment is to look for design
alternatives that would significantly impact the
KWIC system among inconsistent knowledge such
as trade-offs and beliefs.

In this section, we present two different logical
interpretations applied onto the framework topol-
ogy with respect to different business concerns.
The rationale behind these interpretations and our
observations are also discussed.

3.1. Experiment 1: Rigorous Quality Assurance

This experiment is intended for system designs
where strict quality assurance is mandatory. The
goal is to find out what design alternatives would
optimize system quality attributes. As shown in
Figure 4, the NFR softgoals are combined with
logic AND, meaning that all the softgoals have
to be satisficed in order to satisfice their parent
softgoal. To satisfice the NFR softgoals immediately
above, the inference would try to satisfy the
operationalizing softgoals as often as possible, and
hence they are combined with logic ANY. The top-
level NFR softgoals below the overall goal ‘goodness
of system’ are combined with logic ANY.10

This above schematic is applied to the KWIC
framework, and its implications is explained as
follows: the operationalizing softgoals, namely
the sharedData[targetSystem], abstractDatatype[target
System], implicitInvocation[targetSystem] and pipe&
Filter[targetSystem], are attached to modifiability
[DataRep] with ANY, meaning that the infer-
ence engine will try to prove as many of
the operationalizing softgoals as it can to sat-
isfice the modifiability[DataRep]. Satisficing modi-
fiability[System] means all its precondition soft-
goals – modifiability[Process], modifiability[DataRep],
and modifiability[Function] – are satisficed, for they
are combined with an AND. As it is impossible to
find a ‘world’ where the comprehensibility[System],

10 ANY is used instead of AND to allow proper inference on
this particular framework, as it is impossible to satisfice all the
desired system quality attributes represented by the top-level
NFR softgoals.

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

7

Research Section E. Chiang and T. Menzies

modifiability[System], performance[System] and re-
usability[System] are satisficed at the same time, they
are chained with ANY (instead of AND) so that the
top-level goal ‘goodness[System]’ can be satisficed.

Calculations on benefits and costs, as well as
other parameters, are summarized in Figure 3.
Notice that deletability[System] in Figure 2 does not
associate with any operationalizing softgoal. Thus,
it is assumed that certain operation is performed
for its fulfillment, and the cost of this unknown
operation is equal to 1. The class ranking function
is described in Table 1.

Results from incremental treatment learning of
the KWIC framework using the rigorous quality
assurance settings are summarized in Tables 2, 3,
4 and 5. In order to clearly show how TAR2
condenses data ranges to improve the mean of
the more preferred class, the results for each of the
incremental process are presented as a percentile
matrix. Each cell is colored on a scale ranging from
white (0%) to black (100%).

As this experiment represents the case where
business users put more focus on software quality

Table 2. Round 1: Percentage distributions of benefits and costs
seen in 10 000 runs of Figure 4; no treatment

Total

0

1

2

3

4

5

<11

0.27

3.49

22.68

6.74

33.18

<32<27.5

0.02

0.07

0.09

<22

0.45

0.95

1.4

Cost Benefit

<16.5

10.84

4.94

5.88

0.02

54.49

3.86

32.9

10.01

6.66

1.06

<5.5

100

3.86

33.17

13.52

35.69

13.76

Table 3. Round 2: Constraint: sharedData of targetSystem=yes
(rigorous quality assurance)

Total

0

1

2

3

4
5

<11

7.05

8.89
19.2

35.14

<32

0.01

0.01

<27.5

0.01
0.19

0.2

<22

0.11
2.24

2.35

Cost Benefit

<16.5

16.66

14.68
1.7

0.28

45.64

27.84

10.71

4.26
2.83

<5.5

100

27.84

18.04

14.97
39.15

Table 4. Round 3: Constraint: implicitInvocation of targetSystem=
yes, sharedData of targetSystem=yes (rigorous quality assurance)

Total

0

1

2

3

4

5

<11

2.7

18.51

21.13

42.34

<32<27.5

0.32

0.32

<22

0.04

2.45

2.49

Cost Benefit

<16.5

17.63

15.5

2.13

37.22

25.21

8.86

3.15

<5.5

100

27.91

29.54

42.55

Table 5. Round 4: Constraints: abstractDataType of targetSystem=
yes, c3=yes, implicitInvocation of targetSystem=yes, sharedData of
targetSystem=yes (rigorous quality assurance)

Total

0

1

2

3

4

5

<11

24.86

31.01

55.87

<32<27.5

0.34

0.34

0.02

0.02

<22

0.08

3.64

3.72

Cost Benefit

<16.5

25.03

21.51

3.52

15.02

10.34

4.68

<5.5

100

38.8

61.2

(i.e. benefit scores) versus costs, the benefit improve-
ment is emphasized in the following discussion on
treatment results.

Table 2 shows resulting data ranges when no
constraint was imposed on the architectural design
options and claims. Tables 3, 4 and 5 show the result
of applying incremental treatments to Figure 4.
Note that as the key decisions accumulate, the
variance in behavior decreased and the mean
benefit scores improved. The mean benefit drifted
from <5.5 before treatment (Table 2) to <11 at
treatment round 4 (Table 5). Moreover, the number
of samples fell into the high benefit ranges (<27.5
and <32) increased after treatment. Based on this
result, developers may focus on key issues that
would greatly impact overall software quality,
such as whether or not to implement shared
Data for the system. Alternatively, if in some
dispute situation, an analyst could use c2;c4;c5
as bargaining chips. Since these claims have little
overall impact, our analyst could offer them in
any configuration as part of some compromise

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

8

Research Section Early Lifecycle Quality Evaluations

deal in exchange for the other key decisions
being endorsed.

As a last note on the results shown in Tables 3,
4 and 5, we observed that cost increases as
treatments accumulate. In other words, rigorous
quality assurance costs the most but doubles the
average benefit. With this new information, users
are now informed enough to intelligently debate the
merits of rigorous quality assurance over its cost.

3.2. Experiment 2: Weak Quality Assurance

Often, when outside consultants are called in to
offer a rapid assessment on how to improve a
problematic project, they seek the fewest actions
that offer the most benefit. To handle this situation,
we defined a variation of the KWIC framework
to simulate a weaker form of quality assurance.
This assurance scheme is a simple modification
in terms of its logical operations (i.e. swapping
logical operators between softgoals). As shown in
Figure 5, the NFR softgoals are combined with logic
OR, meaning that the parent softgoal is satisficed
when one of its contributing softgoals is satisficed.
Similarly, only one of the operationalizing softgoals
is needed to fulfill the satisficing criteria of the
NFR softgoal immediately above. The parameter
configuration for inference is the same as of rigorous
quality assurance. In order to find the least preferred
behavior, the class rankings are reversed as opposed
to that of the rigorous quality assurance scheme.

Figure 5. Logic configuration for weak quality assur-
ance scheme

Incremental treatment learning is performed on
Figure 5, and the results are shown in Tables 6 to 9.

The goal of this experiment is to determine
what would negatively impact software quality
in the most liberal quality assurance scheme.
Comparing Table 9 (after treatments) with Table 6
(before treatments), the number of samples that
fell into the lowest benefit range (<14.7) increased,
which showed that benefit suffered as treatments

Table 6. Round 1: Percentage distributions of benefits and costs
seen in 10 000 runs of Figure 5; (weak quality assurance)
no treatment

Total

0
1
2
3

4

5

<29.33

10.36
25.26

12.88

1.57

50.07

<87

0.04

<73.33

0.31 0.04

0.1

0.06

0.47

<58.67

3.61

0.59

0.02

1.41

5.63

Cost Benefit

<44

27.57

13.26

1.77

11.92

0.62

16.22

3.06
6.99
4.18

1.72

0.27

<14.67

100

3.06
17.99
42.87

31.82

4.26

Table 7. Round 2: Constraints: c4=yes, pipeAndFilter of target
System=no (weak quality assurance)

Total

0
1
2
3

4

5

<29.33

18.66

0.02

26.32

3.29

48.29

<87

0.02

<73.33

0.06

0.24 0.02

0.3

<58.67

0.7

0.05

3.24

3.99

Cost Benefit

<44

20.67

2.8

16.1

1.77

26.73

12.34
9.18
4.71

0.5

<14.67

100

12.36
29.66
50.63

7.35

Table 8. Round 3: Constraints: c3=yes, c4=yes, pipeAndfilter of
targetSystem=no (weak quality assurance)

Total

0
1
2
3

4

5

<29.33

18.6

0.01

26.17

2.77

47.55

<87

0.01

<73.33

0.1

0.29 0.01

0.39

<58.67

0.56

0.04

3.47

4.07

Cost Benefit

<44

21.91

2.91

17.05

1.95

26.07

11.89
9.03
4.77

0.38

<14.67

100

11.9
29.62
51.76

6.72

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

9

Research Section E. Chiang and T. Menzies

Table 9. Round 4: Constraints: c2=yes, c3=yes, c4=yes, pipeAnd-
Filter of targetSystem=no (weak quality assurance)

Total

0
1
2
3

4

5

<29.33

28.29

0.05

15.66

44

<87

0.05

<73.33

0.48 0.05

0.48

<58.67

0.18

4.27

4.45

Cost Benefit

<44

20.46

15.84

4.62

30.56

20.34
8.38
1.84

<14.67

100

20.39
41.47
38.14

accumulated. The results also suggest that, using
the weaker form of quality assurance scheme, the
overall software quality of the KWIC system suffers
if Pipe & Filter is not implemented. Hence, users
may center their discussions on the possibilities
of implementing the Pipe & Filter option. Most
importantly, high cost solutions can be avoided
(note those results 35% over cost=3 in Table 9)
without degrading overall benefits.

We have presented the treatment learning results
of the KWIC framework experiments on two distinct
settings, and how these settings address different
business concerns. Even though their implications
are different, these experimental results demon-
strated how TAR2 discovers a range of consistent
behavior among the space of inconsistent infor-
mation. Also, as incremental treatment is applied,
variance is reduced and mean values of preferred
classes improved.

4. CASE STUDY: NASA IV&V ACTIVITY
PRIORITIZATION – A STUDY ON THE SR-1
PROJECT

The case study discussed in Section 3 demonstrated
our simulation technique working on a small
example, albeit one often cited in the literature. The
SR-1 Project presented in this section shows how
our softgoal simulation tool scales up to modern
real-world software.

4.1. The SR-1 Project

This case study demonstrates the capability of
the softgoal simulation tool to ‘learn’ treatments
from incomplete data. The overview and the

goal of our study are outlined first, followed by
details of the investigations and analysis process
performed in this study. The treatment learning
strategy is then defined, and the results of our
experimentations presented.

4.1.1. Introduction
This section begins with some basic facts and
terminologies being used throughout this case
study. Then the objective of our study is defined,
and the issues on data unavailability addressed.

The NASA SR-1 (T.S. Corporation 2002) program
refers to the technologies involved in advance
satellite design. It is under a contract from NASA’s
Space Launch Initiative (SLI). In this study, we focus
on the software components of this technology,
specifically on a list of Catastrophic/Critical/High
Risk (CCHR) functions and the standards used for
evaluating their risk and criticality.

The NASA IV&V Facility is one of the organiza-
tions performing V&V on software projects such
as SR-1. Verification and validation (V&V) is a
system engineering process employing a variety
of software engineering methods, techniques and
tools for evaluating the correctness and quality of
a software product throughout its lifecycle (Nasa
website, see References). Independent V&V (IV&V)
is performed by organization that are technically,
managerially and financially independent of the
development organization.

The Criticality Analysis and Risk Assessment
(CARA) (T.S. Corporation 2002) process is a
quantitative analysis used by the NASA IV&V
personnel to determine the appropriate scope
of V&V on a project. CARA is based on the
notion that a function that has high criticality
and high risk requires more extensive inspections
than a function of lower criticality/risk. The CARA
analysis evaluates and rates the criticality and risk
of software functions based on factors such as size
and complexity of program code. These ratings are
then used to calculate the CARA score for each of
these functions. Appropriate IV&V resources are
assigned based on these scores.

4.1.2. Overview and Objective of this Study
Like many other companies, project management
at NASA IV&V Facility has to deal with busi-
ness issues such as delivery deadlines and resource
allocations. It is every manager’s goal to optimize

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

10

Research Section Early Lifecycle Quality Evaluations

resource usage and reduce project costs while meet-
ing deadline dates. On the other hand, each IV&V
analysis activity consumes a different degree of
resources, and some of these activities perform bet-
ter in the V&V process than the others. Finding
out which of these V&V activities are more pow-
erful, and less costly at the same time, would be
helpful for project resource management and task
prioritization. The objective of our study, therefore,
is to look for the analysis activities that are more
cost-effective than others.

In our study of the SR-1 project, we applied the
softgoal framework idea to sketch out the interde-
pendencies between IV&V analysis activities and
the criticality/risk assessments on SR-1 functions,
which are summarized as follows:

• Criticality and risk criteria, such as Perfor-
mance and Operation, are viewed as the quality
attributes which each validated SR-1 functions
are trying to satisfice. They are the NFR softgoals
in the SR-1 framework.

• SR-1 software functions (e.g. vehicle management)
are also viewed as NFR softgoals, as no software
validation process can guarantee these functions
to be absolutely flawless. None the less, their
correctness can be sufficiently satisficed by
applying IV&V analysis activities.

• IV&V analysis activities serve as the operational-
izing softgoals in the framework.

• CARA ratings (catastrophic, critical, high, mod-
erate, low) define the impacts of each function
towards SR-1’s overall criticality and risk factors
upon failure. Thus, they become the interdepen-
dencies between SR-1 software functions and
the criticality and risk criteria.

• Effectiveness of analysis activities relates the
IV&V analysis activities to the applicable SR-1
software functions.

• Significance of SR-1 functions defines its priority.

To illustrate the above idea, a sample segment of
the SR-1 framework is shown in Figure 6. Figure 7
shows the criticality and risk ratings of the SR-1
functions, as well as their analysis levels resulting
from the CARA process. The analysis activities these
levels provide by NASA IV&V for requirements,
design, code and test are listed in Figure 9. Each
of these SR-1 functions maps to an analysis level,
which is mapped to a set of activities assigned
to analyze the function. For example, the function
‘Target State Filter’ (f[tFilter]) is assessed to be level

top goal

Criticality Risk

Cr(a)

[4]

f(vm) f(guid) f(nav) f(sFilter) f(telem) f(tFilter) f(cont)

[4]

[?] [?] [?] [?]

LEGEND

rav01 cav02 dav03 tav04

Operationalizing
Softgoals
(activities)

Nfr Softgoals

[1]: CARA Rating=low
[2]: CARA Rating=moderate

[3]: CARA Rating=Critical/High
[4]: CARA Rating=Catastrophic

[?]: CARA Rating=Unknown

[4] [4] [4] [4] [4]

Cr(b) Cr(c) Ri(a) Ri(b) Ri(c) Ri(d)

Figure 6. Segment of the SR-1 framework

‘Limited’ (L), thus the analysis activities rav01–rav09,
dav01–dav09, cav01–cav06, and tav01–tav07 are
performed to validate the integrity of this function.
Figure 8 shows the cost of these analysis activities
in qualitative terms (low, high and veryHigh). The
term ‘cost’ is used to generalize factors such as time,
manpower, and other IV&V resources.

As we proceeded with our analysis, we found
that the SR-1 softgoal framework displayed typical
features of real-world systems – lack of domain
knowledge and supporting data. First of all, we
were unable to obtain any expert opinions regarding
to the effectiveness of each analysis activities.
Similarly, we have no information on which of
the SR-1 functions are more important than the
others. Moreover, there is discrepancy in the scaling
factors for cost calculations. These factors would

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

11

Research Section E. Chiang and T. Menzies

Figure 7. CARA ratings on SR-1 software functions and
corresponding analysis level

defeat the traditional quantitative approach in
requirement analysis. With our proposed technique,
however, we were able to perform inference and
draw useful conclusions in spite of the lack of
domain knowledge. The next session details how
we handled the incomplete information in the SR-
1 framework.

4.2. Softgoal Framework Construction

The list below describes the uncertainty factors
in the SR-1 framework, translated into softgoal
framework-specific terminologies:

• the contributions of operationalizing softgoals
(analysis activities) to NFR softgoals (SR-
1 functions);

• the priorities of all NFR softgoals;
• the uncertainties intrinsic to the use of quali-

tative representations (e.g. ‘catastrophic CARA’
ratings, ‘veryHigh’ cost).

To allow inference while accounting for the above
factors, we have made some assumptions and cor-
responding adjustments to the inference process.11

They are listed as follows:

• Analysis activities will always contribute posi-
tively to the integrity of SR-1 functions, i.e. all
the operationalizing softgoals will either HELP

11 For further details, please see http://www.ece.ubc.ca/∼
elizac/vio/papers.html.

Figure 8. Analysis activities, applicable analysis levels
for SR-1’s functions; and cost

or MAKE their parent NFR softgoals. To comply
with this assumption, each positive contribution
is randomly chosen to be either HELP or MAKE
by our softgoal simulation tool during inference.

• Performing V&V on either catastrophi-
cally rated or critically/highly

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

12

Research Section Early Lifecycle Quality Evaluations

Code

Rav01

Rav13
Rav12
Rav11
Rav10
Rav09
Rav08
Rav07
Rav06
Rav05
Rav04
Rav03
Rav02

Verify documentation meets intended purpose, has appropriate detail and all necessary elements.

Develop alternative static representations (diagrams, tables)

Code Design Analysis Activity

Code Test Analysis Activity

Review/use developer prototypes or dynamic models
Perform engineering analysis of key algorithms
Review developer timing/sizing, loading engineering analysis
Analyze Timing and Sizing requirements
Analyze development risks/mitigation plans
Assess development metrics
Analyze Data FnotHigh, Control FnotHoigh, moding and sequencing
Analyze Testability, Qualification requirements
Analyze data/adaptation requirement
Verify Traceability to and from parent requirements
Validate ability of requirements to meet system needs

Requirements Analysis Activity

Dal01
Dal02

Code
Dal13
Dal12
Dal11
Dal10
Dal09
Dal08
Dal07
Dal06
Dal05
Dal04
Dal03

Validate ability of design to meet system needs

Code Analysis Activity
Develop alternative static representations (diagrams, tables)
Review/use developer prototypes or dynamic models
Perform design analysis of select critical algorithms
Review developer timing/sizing, loading engineering analysis
Analyze development risks/mitigation plans
Assess design development metrics
Analyze control logic, error/exception handling design
Analyze design Data FnotHigh, Control FnotHigh, moding, sequencing

Cal08
Cal07
Cal06
Cal05
Cal04

Cal03
Cal02
Cal01

Verify error and exception handling

Cal09 Verify code and external I/O data consistency
Cal10 Verify correct adaptation data and ability to reconfigure
Cal11 Verify correct operating system and run time libraries

Verify internal data structures and data fnotHigh/usage
Verify CSU and CSC level logical structure and control fnotHigh
Access code static metrics
Verify supportability and maintainability

Verify Architectural design compliance
(structure, external I/O, and CSCI executive moding, sequencing and control)

Verify Traceability to and from design
Verify documentation meets intended purpose, has appropriate detail and all necessary elements

Analyze design Testability, Qualification requirements
Analyze database design
Verify Traceability to and from requirements

Tal11 Monitor execution of software testing as needed

Tal10 Analyze STD procedures for test setup, execution, and data collection; confirm procedures completely
and correctly test referenced requirements, confirm inspection and analysis completely verifies referenced
requirements

Tal09 Verify regression tests are sufficient to determine that the software is not adversely affected
by changes

Tal08 Verify ability of software test environment plans and designs to meet software testing objectives
Tal07 Verify trace and successful completion of all software test case objectives
Tal06 Validate software test results compliance with test acceptance criteria
Tal05 Analyze correct dispositioning of software test anomalies

Tal04 Verify software STD test case definition inputs, expected results, and evaluation criteria comply with
STP plans and testing objectives

Tal03 Verify test cases traceability and coverage of software requirements, operational needs and capabilities

Tal02 Verify Software Test Plan qualification testing methods and plans are sufficient to validate software
requirements and operational needs

Tal01 Analyze System level verification requirements to verify that test definition, objectives, plans and
acceptance criteria are sufficient to validate system requirements and operational needs
associated with CCHR functions

Verify documentation meets intended purpose, has appropriate detail and all necessary elements

Figure 9. Analysis activities keys to Figure 8

rated functions is assumed to be always benefi-
cial towards the overall safety of SR-1 software.
Also, we assumed that doing V&V to lowly-
rated SR-1 functions has negative impacts on

the framework. The rationale of such assump-
tion is that the additional workload may hinder
job performance of V&V specialists, and hence
out-weigh the gains.

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

13

Research Section E. Chiang and T. Menzies

• For the moderately rated functions, the
effect is assumed to be either positive or neg-
ative. Therefore, such rating is transformed to
be eitherlowly rated or critically rated
during inference.

• All the NFR softgoals have the same priorities.
• The numeric values of the qualitative terms

fall within pre-defined ranges, as shown in
Figure 11.

Regarding the cost discrepancy, two versions of cost
functions were presented to us. Figure 10 describes
these functions.

Other settings used in inferring SR-1 framework
are shown in Figure 11. The resulting SR-1 frame-
work consists of 48 operationalizing softgoal nodes,
28 NFR softgoal nodes, and hundreds of edges rep-
resenting softgoal contributions. As this framework
was too large to be legible, we were unable to
present it in this paper.

After the SR-1 softgoal framework was con-
structed, we carried out our investigations using the
softgoal simulation tool. Details on the experimental
settings (class ranking functions, logic configura-
tions etc.) and treatment learning results are given
in the next section.

4.3. Experiments and Results

The class ranking function used for the SR-1 frame-
work is similar to that of the KWIC framework. The

Figure 10. Two versions of cost function

Figure 11. Miscellaneous settings for SR-1 framework

range of benefits and costs were sub-divided into
four bands (from vlow to vhigh), and each band con-
sists of roughly the same examples. Table 10 shows
these class rankings. Two studies were conducted
based on this ranking function:

• In the ‘most preferred’ study, TAR2 looks for
behaviors that would contribute to the integrity
of the SR-1 functions.

• Conversely, in the ‘least preferred’ study, we
reversed the order of class ranks to find treat-
ments, which would assert negative impact to
the framework.

We constructed and experimented on two varia-
tions of the SR-1 framework, which differed in their
logical compositions12 Figure 12 shows the weakest

Table 10. Class rankings for SR-1 framework

Cost Benefit

vlow low high vhigh

vlow 10 5 2 1
low 12 7 4 3
high 14 9 8 6
vhigh 16 15 13 11

Figure 12. SR-1 framework: 1

12 The appropriateness of these framework variants in represent-
ing the real situations has yet to be determined by NASA experts.

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

14

Research Section Early Lifecycle Quality Evaluations

quality assurance scheme build to represent the
realistic business situation, where analysts try to
perform as many analysis activities to fulfill the
integrity of a SR-1 function, and hence the overall
software quality. In this framework, the analysis
activities at the bottom level were chained with
an ANY, and attached to their corresponding SR-1
function. The SR-1 functions were bound to each
of their critical/risk criteria with an OR, which
were also bound to their upper-level softgoals with
OR. For instance, rav01-rav09 and tav01-tav07 are
chained with ANY and attached under SR-1 func-
tion f[cam], meaning that the associated activities
would be proven as many times as it could dur-
ing inference to satisfice f[cam]. Function f[cam],
together with other functions (such as f[vm], f[guid],
f[nav] etc.) were chained to the risk criteria Ri[d]
with logic OR. Therefore, satisficing one SR-1 func-
tion would be sufficient to satisfice the risk criteria.
Similarly, the risk criteria Ri[a] to Ri[d] are combined
with OR under the overall risk softgoal, which was
connected to the top-level softgoal with an ANY. In
other words, satisficing one risk criteria would be
enough to satisfice the overall risk softgoal, which
would lead to the top-level softgoal being satisficed.

For comparison with Figure 12, we proposed
another SR-1 framework to represent rigorous qual-
ity assurance. For this, we derived two prototypes
of such a framework, presented in Figures 13 and

Figure 13. SR-1 framework: 2

Figure 14. SR-1 framework: 3

14. Figure 14 defined the strictest form of quality
assurance, in which all the NFR softgoals (i.e. SR-1
functions, risk/criticality criteria, risk and criticality
softgoals, and the top-level softgoal) are combined
with AND, except for the bottom level operational-
izing softgoals (i.e. analysis activities), which were
combined with ANY. We reviewed this configura-
tion and found it corresponded to a ‘Utopia’ model
of rigorous quality assurance, since it is impractical
in a real-world situation to fulfill the complete set
of quality requirements as implied by this model.
Because of its lack of practical application, we aban-
doned this model and experimented on a more
‘pragmatic’ rigorous quality assurance model, as
shown in Figure 13. In this ‘pragmatic’ model, ANY
were used to replace AND in the ‘Utopia’ model
as a weaker form of conjunctive logical operator.
Further, OR was used to replace ANY to further
relax the satisficing constraint. Under this scheme,
one satisficed analysis activity at the bottom level
of the framework would be sufficient to fulfill the
SR-1 function softgoal at the upper level. The infer-
ence engine would attempt to satisfice these SR-1
function softgoals as many times as possible to
satisfice the criticality/risk criteria softgoals, which
would also be attempted as many times as possible
for the upper level overall criticality/risk softgoals.
Finally, the top-level softgoal would be satisficed
when either one or both of the overall criticality/risk

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

15

Research Section E. Chiang and T. Menzies

softgoals were satisficed. We found this model to
be a closer match to the real-world business case;
hence it was used in performing the experiments in
our studies.

After the framework variations were defined,
Monte Carlo simulations were applied to each
variant twice, each time with different cost func-
tions. After that, treatment learning was applied to
each set of data in finding the most/least favorable
treatments. The effects of these treatments are com-
pared with the control situations (i.e. no treatment)
in terms of costs and benefits. Results from the
experimentations described above are presented in
two groups: Tables 11, 12 and 13 for weak quality
assurance, and Tables 14, 15 and 16 for ‘pragmatic’
rigorous quality assurance.

Recall that the class ranking function defined
in Table 10 accounted for both benefit and cost
with slight preference towards lower cost (e.g.
Cost=vlow, Benefit=high has a higher ranking than

Table 11. SR-1 framework 1: Percentage distributions of benefits
and costs seen in 10 000 runs of Figure 12; no treatment

Total

vlow

low

high

vhigh

low

6.2

4.02

5.64

15.86

Total

24.99

100

15.86

34.15

25

vhigh

8.82

5.58

10.59

24.99

Cost Benefit

high

25

8.76

9.98

6.26

34.15

34.15

vlow

Table 12. More preferred system: SR-1 framework 1: Percentage
distributions of benefits and costs Seen after applying treatments
(tav09 of tal=y) for a more desirable system

Total

vlow

low

high

vhigh

low

9.95

4.70

9.05

23.7

Total

40.1

100

19.7

40.1

vhigh

14.2

7.30

17.0

38.5

Cost Benefit

high

37.8

14.1

16.0

7.74

vlow

Table 13. Less preferred system: SR-1 framework 1: Percentage
distributions of benefits and costs seen after applying treatments
(cav10 of cal=y) for a less Desirable System

Total

vlow

low

high

vhigh

low

5.16

17.32

22.47

76.73

100

23.27

vhigh

8.6

32.51

41.11

Cost TotalBenefit

high

36.41

26.9

9.52

vlow

Table 14. SR-1 framework 2: Percentage distributions of benefits
and costs seen in 10 000 runs of Figure 13; no treatment

Total

vlow

low

high

vhigh

low

8

6.03

25

2.48

3.84

1.06

25.01

24.99

100

25

vhigh

7.4

8.85

24.99

Cost TotalBenefit

high

17.63

25

9.05

7.12

8.76 256.246.16

2.21 25.012.52.67

vlow

Table 15. More preferred system – SR-1 frame work 2: Per-
centage distributions of benefits and costs seen after applying
treatments (dav12 of dal=n) for a more desirable system

Total

vlow

low

high

vhigh

low

7.65

1.56

23.91

2.26

4.88

32.84

6.38

100

24.19

vhigh

7.61

2.32

22.18

Cost TotalBenefit

high

21.06

2.16

6.67

11.58 33.528.668.4

3.13 35.913.63.83

vlow

25.35

Cost=low, Benefit=vhigh). Because of this setting,
treatment learner would always recommend treat-
ments that sacrifice a lower benefit for a lower
cost. All out result sets reflected this particular
class setting.

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

16

Research Section Early Lifecycle Quality Evaluations

Table 16. Less preferred system – SR-1 frame work 2: Percentage
distributions of benefits and costs seen after applying treatments
(cau07 of cal=y) for a less desirable system

Total

vlow

low

high

vhigh

low

15.52

12.95

34.44

5.51

3.4

4.13

13.22

50.96

100

35.72

vhigh

6.98

17.17

26.26

Cost TotalBenefit

high

26.08

16.71

7.71

5.69 12.862.111.65

vlow

Several features of these results deserve com-
ment. Consider the results of the experiment on
SR-1 framework 1 (weak quality assurance). First,
treatment eliminated samples within the Cost=vlow,
Benefit=vlow range, from >34% before treatment to
0% after treatment. Secondly, for the ‘more pre-
ferred’ system (where tav09 of tal=y), treatment
learning drove the sample distributions towards a
higher benefit range (Benefit=high and Benefit=vhigh
occupied >76%, as opposed to <50% with no
treatment). Third, the distributions of total benefit
received after treatments were roughly the same for
both the ‘most preferred’ and ‘least preferred’ sys-
tem. However, the ‘least preferred’ system (where
cav10 of cal=y) suffered from very high cost (77% of
the sample was classified as Cost=vhigh), compared
to the ‘most preferred’ system (41% of the sample).
This effect could be explained by the way the class
ranking function was defined. Treatment learning
for the ‘more preferred’ system would give recom-
mendations that yield lower cost over lower benefit,
whereas it would identify treatments that result in
higher cost for the ‘least preferred’ system.

The result for the ‘pragmatic’ rigorous quality
assurance (Figure 13) scheme is presented in a sim-
ilar fashion as the weak one described above. The
experimental data is shown in Tables 14, 15 and
16. First of all, treatments for the ‘more preferred’
system (dav12 of dal=n) resulted in an increase
of samples in the Cost=vlow and Cost=low range,
from >50% to >69%. None the less, the samples
within the range Benefit=vlow and Benefit=low also
increased (from 50% to <57%), a clear indication
on the proportionality of cost and benefit. On the
other hand, treatment for the ‘least preferred’ sys-
tem (cav07 of cal=y) resulted in very high cost

(>85% in the Cost=high and Cost=vhigh range) com-
pared to that of no treatment (<50%). However,
the benefit did not significant increase correspond-
ingly, as >52% in the Benefit=high and Benefit=vhigh
range after treatment, where it was <50% before
treatment.

To conclude the SR-1 case study, the following
points summarize the results and our observations:

• The use of logic components significantly affects
the treatments that TAR2 recommends.

• Variation on cost functions was found to have
no observable effect on the resulting treatment
recommendations from all SR-1 framework
variants studied.

• For all experimentations on the SR-1 framework,
TAR2’s treatment recommendations have been
ten-way cross-validated13 and their trustworthi-
ness ensured. In other words, all of TAR2’s treat-
ment recommendation remained stable, in spite
of the uncertainties and imprecise factors (as
discussed in Section 4.2) within the framework.

• For the results shown in Table 15 (on SR-1
framework 2), TAR2 suggested not doing dav12
would be beneficial. Our treatment learning
method can give advice on which activities
should not to be done in order to receive the
most preferred outcome.

5. RELATED WORK

Inference diagrams (Shachter 1986) (a form of Bayes
nets) have been used to sketch out subjective knowl-
edge, then assess and tune each knowledge variable
based on available data. This modeling scheme is
used by Burgess et al. (2001) in evaluating require-
ments that are candidates to be included in the next
release of some software. Bayesian reasoning the-
ory adopts a quantitative, probabilistic approach to
solving decision problems. Its algorithm is widely
studied and well understood, and the inference
tool is widely available. To apply Bayesian the-
ory in defining the softgoal framework, one needs
to translate the relationship between operational

13 Cross-validation is a method of estimating the generalization
error based on ‘re-sampling’. In ten-way cross-validation, the
entire dataset is randomly split into ten mutually exclusive
subsets of approximately equal size. Each subset is being tested
on the inducer that is trained by the other nine subsets of data
(Kohavi 1995).

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

17

Research Section E. Chiang and T. Menzies

softgoals (design alternatives) and NFR softgoals
(software quality attributes) into probabilities (e.g.
0.6, 0.8). These numerical values may not be as intu-
itive as linguistic descriptions (‘HELP’, ‘MAKE’).
Moreover, when data required to determine the
likelihoods for the calculation of posterior probabil-
ities are not available, certain assumptions have to
be made. These assumptions negate the authentic-
ity of the answer obtained by Bayesian inference.
Therefore, inference diagrams may not be the best
for early lifecycle requirement modeling.

Fuzzy Petri nets, a formalism that combines fuzzy
set theory and Petri net theory, is a tool for the rep-
resentation of uncertain knowledge about a system
state. It has been used to reason about uncer-
tainty in robotic systems (Cao and Sanderson 1993).
However, within a Petri net, the way membership
functions attach to each token and certainty factors
associated with transitions can be hard to under-
stand. For business users that are involved in con-
structing the requirement model, a simple modeling
convention is much preferred to a sophisticated one.
Thus, using Petri nets may not be very practical.

NASA’s DDP (Defect Detection and Prevention)
model (Feather and Cornford 2002) is a risk manage-
ment framework designed to aid decision-making
during the earlier phases of advanced technology
and system development. It utilizes quantitative
analysis, which accepts only one numeric value for
each required quantitative value. It is unable to
represent the actual situations where uncertainty
factors exist.

6. CONCLUSION AND FUTURE WORK

The requirement analysis technique proposed in
this paper is summarized as follows. First, a model is
needed to capture the trade-offs/synergy between
software quality attributes and applicable design
alternatives. We have adopted the softgoal frame-
work by Chung et al. (1999) in modeling such
knowledge for analysis. Second, an inference engine
is built to automatically execute the text-encoded
softgoal framework. Thirdly, we incorporate Monte
Carlo simulation to explore the wide range of behav-
iors in the model, and summarize these behaviors
with a treatment-learning tool named TAR2.

From what we have observed in our experi-
ments on both KWIC and SR-1 frameworks, our
simulation tool successfully discovered consistent

behaviors within each framework despite various
uncertainty factors, and provided treatment recom-
mendations relevant to business concerns. As this
approach does not require much concrete domain
knowledge, time and expenses dedicated to data
collection (e.g. appointments with domain experts,
gathering surveys) can be minimized. Moreover,
TAR2’s treatment results pinpointed the most crit-
ical decision towards the problem domain, thus
users can focus on this key issue and allot less time
in discussing the non-critical ones.

The requirement analysis technique presented in
this paper is in its preliminary state, and research is
in progress. Much remains to be done to investigate
the softgoal framework behavior and refine the
proposed technique with more real-world case
studies. Specifically, work will be done to determine
the sensitivity to benefit and cost functions in the
general softgoal framework. With our connection
with the NASA IV & V Facility, we are optimistic
in receiving more case study materials to conduct
further research activities.

ACKNOWLEDGEMENTS

This research was conducted at the University of
British Columbia and West Virginia University,
partially under NASA contract NCC2-0979. In part,
this work was sponsored by the NASA Office of
Safety and Mission Assurance under the Software
Assurance Research Program led by the NASA
IV & V Facility. Reference herein to any specific
commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by the
United States Government.

REFERENCES

Abdel-Hamid T, Madnick S. 1991. Software Project
Dynamics: An Integrated Approach. Prentice-Hall Software
Series.

Akhavi M, Wilson W. 1993. Dynamic simulation of
software process models. In Proceedings of the 5th
Software Engineering Process Group National Meeting
(held at Costa Mesa, California, April 26–29), Software
engineering Institute, Carnegie Mellon University.

Bratko I. 2001. Prolog Programming for Artificial Intelligence.
3rd edn. Addison-Wesley.

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

18

Research Section Early Lifecycle Quality Evaluations

Burgess CJ, Dattani I, Hughes G, May JHR, Rees K. 2001.
Using influence diagrams to aid the management of
software change. Requirements Engineering 6(3): 173–182.

Cao T, Sanderson AC. 1993. A Fuzzy Petri approach
to reasoning about uncertainty in robotic systems.
Proceedings of the IEEE International Conference on
Robotics and Automation, p. 317–322.

Chung YM, Nixon Yu, Mylopoulous. 1999. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers.

Clancey W, Sachs P, Sierhuis M, van Hoof R 1996.
Brahms: simulating practice for work systems design. In
Proceedings PKAW ‘96: Pacific Knowledge Acquisition Work-
shop, Compton P, Mizoguchi R, Motoda H, Menzies T,
(eds). Department of Artificial Intelligence.

Feather M, Menzies T. 2002. Converging on the optimal
attainment of requirements. International Conference on
Requirements Engineering.

Feather MS, Cornford SL. 2002. Quantitative risk-based
requirements reasoning. Requirements Engineering Journal
(submitted).

Harel D. 1990. Statemate: a working environment for
the development of complex reactive systems. IEEE
Transactions on Software Engineering 16(4): 403–414.

Harrell H, Ghosh L, Bowden S. 2000. Simulation Using
ProModel. McGraw-Hill.

NASA Jet Propulsion Laboratory web site.
http://www.jpl.nasa.gov.

Kalos M, Whitlock P. 1986. Monte Carlo Methods, Volume
1: Basics. Wiley: New York.

Kelton D, Sadowski R, Sadowski D. 2002. Simulation with
Arena. 2nd edn. McGraw-Hill.

Kohavi R. 1995. A study of cross-validation and bootstrap
for accuracy estimation and model selection. IJCAI-95.

Law A, Kelton B. 2000. Simulation Modeling and Analysis.
McGraw-Hill.

Martin R, Raffo DM. 2000. A model of the software
development process using both continuous and
discrete models. International Journal of Software Process
Improvement and Practice, June/July.

Menzies T. 2001. Practical machine learning for software
engineering and knowledge engineering; Handbook of Software
Engineering and Knowledge Engineering. World-Scientific.

Menzies T, Chiang E, Feather M, Hu Y, Kiper JD. 2002.
Condensing uncertainty via incremental treatment
learning. Annals of Software Engineering (special issue on
Computational Intelligence).

Hu Y,• Menzies T. 2001. Constraining discussions in Q1
requirements engineering via models.

Mi P, Scacchi W. 1990. A knowledge-based environment
for modeling and simulation software engineering
processes. IEEE Transactions on Knowledge and Data
Engineering, September: 283–294.

NASA IV & V web site. http://www.ivv.nasa.gov/.

Parnas D. 1972. On the criteria to be used in decomposing
systems into modules. Communications of the ACM 5(12):
1053–1058.

SWI-Prolog web site. http://www.swi-prolog.org/.

Shaw M, Garlan D. 1996. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall.

Shachter RD. 1986. Evaluating influence diagram.
Operations Research 34(6): 871–882.

Simon HA. 1957. Rational choice and the structure of the
environment. In Models of Man. Simon HA (ed.). Wiley:
New York.

T.S. Corporation. 2002. IV&V Catastrophic/Critical/High
Risk Function List for the Demonstration of Autonomous
Rendezvous Technology Project.

Sterman H. 2000. Business Dynamics: Systems Thinking and
Modeling for a Complex World. Irwin McGraw-Hill.

Copyright 2003 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2003; 8: 000–000

19

QUERIES TO BE ANSWERED BY AUTHOR (SEE MARGINAL MARKS)

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto
the proof at the relevant place. Do NOT mark your corrections on this query sheet.

Query No. Query

Q1 ?

