
Constraining Discussions in Requirements Engineering via Models
�

Tim Menzies � , Ying Hu �
University of British Columbia �

tim@menzies.com, yingh@ece.ubc.ca

Abstract

Models are used in requirement engineering to inform the
process of goal elaboration and refinement. Models writ-
ten in early life cycle are often based on incomplete in-
formation. Hence, such models easily generate an un-
manageably large space of possibilities. We show here
that this very large space can be reduced by identifying
the most informative issues in the search space. By iter-
atively resolving the next most informative issue, we are
able to quickly constrain the space of possibilities to just
the issues most important for the requirements. In this pa-
per, we build a qualitative model to sample requirement
options and use the TAR2 treatment learner to find out
the most informative question as further constrains to the
model. By iteratively exploring the most informative is-
sues, new constraints can be discovered which, when ap-
plied to the model, dramatically reduce the space to a de-
gree where the number of options becomes manageably
small.

1 Introduction

Requirements engineering (RE) is (1) the elicitation of
high-level goals of some envisioned system followed by
(2) the refinement of these goals into services and con-
straints, and (3) the assignment of responsibilities for the

1Submitted to the first International Workshop on Model-based Re-
quirements Engineering, November 30, 2001, San Diego, http://
www.bfsng.com/mbre01/.

2http://tim.menzies.com, phone (604) 822-3381
3http://www.ece.ubc.ca/twiki/bin/view/

Softeng/YingHu.
4Department of Electrical & Computer Engineering; 2356 Main

Mall; Vancouver, B.C. Canada V6T1Z4.

resulting requirements to agents such as humans, devices,
and software [12]. RE is typically performed within a
community of stakeholders, who may have different goals
and priorities.

Model-based requirements engineering (MBRE) uses
some formal, possibly executable, model to inform the
requirements process. Models offer additional constraints
to a discussion. Options can be quickly rejected if the
model informs the analyst that those options are impossi-
ble. Various what-if queries can be answered by exploring
the space of options offered by the model.

The ability of models to inform and constrain a require-
ments discussion is quite important. After Parnas [10] we
say that requirements elaboration is essentially the explo-
ration of paths down a decision tree, with each node corre-
sponding to a design decision. Each decision injects new
constraints into the tree of options. Decisions towards the
top of the tree are the hardest to change (because they
require more back-tracking), whereas decisions near the
leaves of the tree are much easier to change.

When exploring a tree of requirements options, some
issues should be explored first. We call the issues that
most divide the tree of options the most informative is-
sues. These issues should be explored first because:

� Answers to the big issues can rule out much of the
space of options. That is, the answers to some ques-
tions will render irrelevant many of more trivial is-
sues.� Resolving some issues may require gathering do-
main details. However, if details are requested in
same order as the most informative issues, then a
minimum of domain questions will be asked.

This paper proposes an iterative cycle for exploring op-
tions in model-based requirements engineering:

1

� Given a model and some known constraints...� Execute the model within those constraints to gener-
ate an experience base.� Query the experience base to learn the most informa-
tive issues. This step is crucial. If this query mech-
anism is effective, then this cycle will yield the least
number of questions that constrains the options space
the most.� Explore the most informative issues to find an exten-
sion to the constraints.� Repeat until the number of options becomes man-
ageably small.

A similar iterative cycle has been proposed for model-
based diagnosis using entropy measures [3]. Given that
each probe into a device is expensive, the best probe can
be selected via an heuristic entropy measure (entropy is
the technical name for information content). Here, we ex-
plore a similar cycle but use a treatment learner (defined
below) to identify the most informative issues.

The rest of the paper is structured as follows. The next
section is a description of our sample model which can
generate many alternatives (in fact, 35,228 alternative be-
haviors). This is followed by an introduction to the TAR2
treatment learner. Finally, we will show that treatment
learners can dramatically reduce options space. Specifi-
cally, in our case study, three questions found by a treat-
ment learner were enough to reduce the space of options
to one fifth of one percent of its former size.

2 Representing an Options Genera-
tor

The technology discussed in this paper is being devel-
oped for a large financial institution that wants to develop
requirements for a particular software process (handling
customer sales and queries over the phone). Their model
of software process is corporate confidential.

Without a real model to show, we will demonstrate the
technique using a qualitative model of an electrical circuit.
The qualitative model has many features in common with
the real business model:
� The general topology of the model is known but pre-

cise numeric values for any of the inter-relationships
are unknown.

Sw1

B1 B2

B3

Sw2

Sw3

Figure 1: A qualitative circuit.

%sum(X,Y,Z).
sum(+,+,+). sum(+,0,+). sum(+,-,Any).
sum(0,+,+). sum(0,0,0). sum(0,-,-).
sum(-,+,Any). sum(-,0,-). sum(-,-,-).

Figure 2: Qualitative mathematics using a Prolog syn-
tax [1].

� Certain business sub-processes are reused in multi-
ple places across the model. Various qualitative con-
straints are known for these “business sub-routines”.� The model is not determinate. Due to the various
unknowns within the model, a set of inputs will gen-
erate a range of outputs, not a unique value.� Model output can be assessed using a coarse-grained
evaluation function that declares some outputs better
than others.

Our model will be on the qualitative electrical circuit
of Figure 1. A qualitative model is a quantitative mode
whose numeric values � are replaced by a qualitative
value ��� having one of three qualitative states: +, -, 0 [1];
i.e.

�
	���
 ���������
� 	 �������������
� 	 ��� ���������

The sum relation of Figure 2 describes our qualitative
knowledge of addition using a Prolog notation. In Pro-
log, variables start with upper case letters and constants
start with lower-case letters or symbols. For example,

2

%blub(Mode,Light,Volts,Amps)
bulb(blown,dark, Any, 0).
bulb(ok, light, +, +).
bulb(ok, light, -, -).
bulb(ok, dark, 0, 0).

%num(Light, Glow). %switch(State,Volts,Amps)
num(dark, 0). switch(on, 0, Any).
num(light, 1). switch(off, Any, 0).

Figure 3: Definitions of qualitative bulbs and switches.
Adapted from [1].

sum(+,+,+) says that the addition of two positive val-
ues is a positive value. Some qualitative additions are un-
defined. For example sum(+,-,Any) says that we can-
not be sure what happens when we add a positive and a
negative number.

The bulb relation of Figure 3 describes our qual-
itative knowledge of bulb behavior. For example,
bulb(blown,dark,Any,0) says that a blown bulb is
dark, has zero current across it, and can have any voltage
at all. Also shown in Figure 3 is the num and switch re-
lations. Num defines how bright a dark or light bulb glows
while switch describes our qualitative knowledge of
electrical switches. For example switch(on,0,Any)
says that if a switch is on, there is zero voltage drop across
it while any current can flow throw it.

The circuit relation of Figure 4 describes our quali-
tative knowledge of the circuit using bulb, num, sum
and switch. This relation just records what we know of
circuits wired together in series and in parallel. For exam-
ple:

� Switch3 and Bulb3 are wired in parallel. Hence,
the voltage drop across these components must be
the same (see line 8).� Switch2 and Bulb2 are wired in series so the
voltage drop across these two devices is the sum of
the voltage drop across each device. Further, this
summed voltage drop must be the same as the volt-
age drop across the parallel component Bulb3 (see
line 11).� Switch1 and Bulb1 are in series so the same cur-
rent C1 must flow through both (see line 12 and line
13)

1 circuit(switch(Sw1,VSw1,C1),
2 bulb(B1,L1,VB1,C1),
3 switch(Sw2,VSw2,C2),
4 bulb(B2,L2,VB2,C2),
5 switch(Sw3,VSw3,CSw3),
6 bulb(B3,L3,VB3,CB3),
7 Glow) :-
8 VSw3 = VB3,
9 sum(VSw1, VB1, V1), % 9 options

10 sum(V1,VB3,+), % 1 option
11 sum(VSw2,VB2,VB3), % 9 options
12 switch(Sw1,VSw1,C1), % 2 options
13 bulb(B1,L1,VB1,C1), % 4 options
14 switch(Sw2,VSw2,C2), % 2 options
15 bulb(B2,L2,VB2,C2), % 4 options
16 switch(Sw3,VSw3,CSw3),% 2 options
17 bulb(B3,L3,VB3,CB3), % 4 options
18 sum(CSw3,CB3,C3), % 9 options
19 sum(C2,C3,C1), % 9 options
20 num(L1,N1),
21 num(L2,N2),
22 num(L3,N3),
23 Glow is N1+N2+N3.

Figure 4: Figure 1, modelled in Prolog. Adapted from [1].

In order to stress test our method, our case study will
wire up three copies of Figure 4 in such a way that so-
lutions to one copy won’t necessarily work in the other
copies. Figure 5 shows our circuit connected by a set of
openners and closers that open/close switches based on
how much certain bulbs are glowing. For example, the
closer between bulb B2A and switch Sw1B means that if
B2A glows then Sw1B will be closed. These openners and
closers are defined in Figure 6. The full model is shown
in Figure 7.

3 The TAR2 Treatment Learner

The model described in the previous section is capable
of generating tens of thousands of examples. Some sum-
marization technology is required to understand all these
examples. Treatment learners are one such summariza-
tion method since they report a small number of actions
that can most change the behavior of a system.

Treatment learners are different to standard machine
learners; e.g. the C4.5 decision tree learners [11]. Stan-
dard machine learners output classifiers that mapping at-

3

1 circuits :-
2 % some initial conditions
3 value(light,bulb,B1a),
4 % Uncomment to constrain Sw2c
5 % value(off,switch,Sw2c),
6 % Uncomment to constrain Sw1c
7 % value(on,switch,Sw1c),
8 % Uncomment to constrain Sw3c
9 % value(on,switch,Sw3c),

10 % explore circuit A
11 circuit(Sw1a,B1a,Sw2a,B2a,Sw3a,B3a,GlowA),
12 % let circuit A influence circuit B
13 inf(+,B1a,Sw1b),
14 inf(-,B2a,Sw3b),
15 % let circuit B influence circuit C
16 circuit(Sw1b,B1b,Sw2b,B2b,Sw3b,B3b,GlowB),
17 % propagate circuit B to circuit C
18 inf(-,B3b,Sw2c),
19 inf(+,B2b,Sw3c),
20 % explore circuit C
21 circuit(Sw1c,B1c,Sw2c,B2c,Sw3c,B3c,GlowC),

22 % compute total shine
23 Shine is GlowA+GlowB+GlowC,
24 % make one line of the examples
25 format(’˜p,˜p,˜p,˜p,˜p,˜p,˜p,˜p,˜p’,
26 [Sw1a,Sw2a,Sw3a,Sw1b,Sw2b
27 ,Sw3b,Sw1c,Sw2c,Sw3c]),
28 format(’˜%,˜%,˜%,˜%,˜%,˜%,˜%,˜%,˜%,˜p’,
29 [B1a,B2a,B3a,B1b,B2b,B3b
30 ,B1c,B2c,B3c,Shine]),nl.
31
32 data :- tell(’circ.data’),
33 forall(circuits,true), told.
34
35 % some support code
36 value(Sw, switch, switch(Sw,_,_)).
37 value(Light, bulb,bulb(_,Light,_,_)).
38
39 :- format_predicate(’%’,bulbIs(_,_)).
40
41 bulbIs(_,bulb(X,_,_,_)) :-
42 var(X) -> write(’?’) |write(X).
43
44 portray(X) :- value(Y,_,X), write(Y).

Figure 7: Figure 5 expressed in Prolog.

A

Sw1

B1 B2

B3

Sw2

Sw3

B

Sw1

B1 B2

B3

Sw2

Sw3

C

Sw1

B1 B2

B3

Sw2

Sw3

+

+

- -

Bulb Switch + Closer-OpennerKEY:

Figure 5: A device modelled using the Prolog of Figure 5.

%inf(Sign,Bulb,Switch)
inf(Inf,bulb(_,Shine,_,_),switch(Pos,_,_)) :-

inf1(Inf,Shine,Pos).

%inf1(Sign,Glow,SwitchPos)
inf1(+,dark, off). inf1(+,light, on).
inf1(-,dark, on). inf1(-,light, off).

Figure 6: The inf1/3 predicate used to connect bulb
brightness to switches.

tributes to classes. These standard learners treated their
classes the same way. The TAR2 treatment learner as-
sumes that some partial ordering has been defined for the
classes; i.e. some classes are less desirable than others
and one class is best.

TAR2 outputs a treatment, which is a constraint on fu-
ture controllable inputs of a system. The intent of a con-
straint is to increase the ratio of preferred classes. Unlike
normal machine learners, TAR2 does not output a classi-
fier. Rather, it outputs a strategy that “nudge” the system
towards the better classes.

TAR2 can best be introduced via example. Consider
the log golf playing behavior shown in Figure 8. This log
contains four attributes and 3 classes. Recall that TAR2
accesses a score for each class. For a golfer, the classes in
Figure 8 could be scored as none=2 (i.e. worst), some=4,
lots=8 (i.e. best). Note that the preferred classes score ex-
ponentially higher than the non-preferred classes. As we
shall see, this disproportionate weighting scheme strongly
encourages TAR2 to chase the better classes.

TAR2 seeks attribute ranges that occur more frequently
in the highly scored classes than in the lower scored
classes. Let ��� be some attribute range e.g. out-
look=overcast) !#"%$ & is a heuristic measure of the worth

4

outlook temp(' F) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Figure 8: A log of some golf-playing behavior.

of ��� to improve the frequency of the (*)
+-, class. ! "%$ &
uses the following definitions:
.0/ �1� 32 : is the number of occurrences of that attribute

range in class
.

; e.g. lots(outlook.overcast)=4.

�5464 / ��� 32 : is the total number of occurrences
of that attribute range in all classes; e.g.
all(outlook.overcast)=4.

(*)
+7, : the highest scoring class; e.g. (*)
+-,98:4<;=,>+ ;

)
+-, : the non-best class; e.g.
)
+-,?8A@7BC;=BC)EDF+%;=GH)JI ;
+%KL;=
) : The score of a class

.
is M . ;.

!N"%$ & is calculated as follows:

OQP%R S �UTWVQX SZY\[\]Z^`_badcFe>f � _Fgih5jk^ladcbeZf\^nm
o pLh � gq^nm
o pLh6hm-rsr`^lm3o pLh
When a.r is outlook.overcast, then !�t>u%v`wstFtFx $ t>yLz &F{d"L| v is
calculated as follows:

wst>v |Z}i~ t ~ z� �*� �/�/6����� 2�� /6�i��� 2>2��
wst>v |Z}�| t���z� �*� �/�/6����� 2C� /��i��� 2�2� � � � � 8

�E�
��8�� �

The attribute ranges in our golf example generate the
! histogram shown in Figure 9. Note that out-
look=overcast’s ! is the highest, potentially most effec-
tive, attribute range.

0
1
2
3

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Figure 9: ! distribution seen in golf data sets. Outstand-
ingly high ! values shown in black. Y-axis is the number
of attribute ranges that have a particular ! .

�����F�E�3���J� �- E¡\¢l�7�7£i¤�-¥3�*¦7���¨§b¡

0
2
4
6

5 3 6
0
2
4
6

0 0 4

= none (worst)

= some

= lots (best)

Figure 10: Finding treatments that can improve golf play-
ing behavior. With no treatments, we only play golf lots
of times in ©ªF«C¬�« © 8®­E¯J° of cases. With the restriction
that outlook=overcast, then we play golf lots of times in
100% of cases.

A treatment is a subset of the attribute ranges with an
outstanding ! "*±C& value. For our golf example, such at-
tributes can be seen in Figure 9: they are the outliers with
outstandingly large ! s on the right-hand-side. (These
outliers include outlook=overcast.

To apply a treatment, TAR2 rejects all example entries
that contradict the conjunction of the attribute rages in the
treatment. The ratio of classes in the remaining examples
is compared to the ratio of classes in the original example
set. The best treatment is the one that most increases the
relative percentage of preferred classes. In our golf ex-
ample, the best treatment is outlook=overcast; Figure 10
shows the class distribution before and after that treat-
ment. i.e. if we bribe disc jockeys to always forecast
overcast weather, then in 100% of cases, we should be
playing lots of golf, all the time.

4 Experiments

The less that is known about a model, the greater the
number of possible behaviors. This effect can easily be
seen in our qualitative model. Each line of Figure 4
is labelled with the number of possibilities it condones:
i.e. 9*1*9*2*4*2*4*2*4*9*9=3,359,232. Copied three

5

Sw1a, Sw2a, Sw3a, Sw1b, Sw2b, Sw3b, Sw1c, Sw2c, Sw3c, B1a, B2a , B3a, B1b , B2b , B3b , B1c , B2c , B3c , Shine
on , off , off , on , off , on , off , on , off , ok , blown, ok , blown, blown, blown, blown, blown, blown, 2
on , off , off , on , off , on , off , on , off , ok , blown, ok , blown, blown, blown, blown, blown, blown, 2
on , off , off , on , off , on , off , on , off , ok , blown, ok , blown, blown, blown, blown, blown, blown, 2
on , off , off , on , off , on , off , on , off , ok , blown, ok , blown, blown, blown, ok , blown, blown, 2
on , off , off , on , off , on , off , on , off , ok , blown, ok , blown, blown, ok , blown, blown, blown, 2
on , off , off , on , on , on , off , on , off , ok , blown, ok , blown, blown, blown, blown, blown, ok , 2
on , off , off , on , off , on , off , on , off , ok , blown, ok , ok , blown, ok , blown, ok , blown, 3
on , off , off , on , off , on , off , on , off , ok , blown, ok , ok , blown, ok , blown, ok , ok , 3
on , off , off , on , off , on , off , on , off , ok , blown, ok , ok , blown, ok , blown, blown, blown, 3
on , off , off , on , off , on , on , on , off , ok , blown, ok , ok , blown, blown, ok , ok , blown, 5

Figure 11: Some output seen in circ.data generated using data (line 32 of Figure 7). Columns denote values
from Figure 5. For example, Sw1a and Sw1b denotes switch 1 in ciruit A and ciruit A respectively.

times ,these implies a space of up to ²�DF²¨­J³�D � ² � ¬ 8�� �E´>µ
options. Even many of these possibilities are ruled out
by inter-component constraints, the circuits relation
of Figure 7 can still succeed 35,228 times (some sample
output is shown in Figure 11).

Given the goal that the more lights that shine, the bet-
ter the circuit, we assess 10 classes:

� D7�JD � D�²�D-�l� ³ , one for
every possible number of glowing bulbs. As shown in
Figure 12, 35,228 runs there are very few lights shining.
TAR2’s mission is to explores the space, trying to find the
key constrain which, when apply to the circuit, can most
improve this low level of lighting.

Untreated circuit

0

15

30

45

0 1 2 3 4 5 6 7 8 9

Figure 12: Frequency count of number of bulbs glowing
in the 35,228 solutions of circuits of Figure 7.

4.1 Exploration 1

After learning treatments, and applying some of them to
the data, TAR2 generated Figure 13.

In summary, Figure 13 is saying that answering a sin-
gle question will change the average illumination of the
circuit from 2 to 5 (if Sw2C=off) or 6 (if Sw3C=on). it

if Sw2C=off then ... if Sw3C=on then ...

0

15

30

45

0 1 2 3 4 5 6 7 8 9
0

15

30

45

0 1 2 3 4 5 6 7 8 9

Figure 13: Run#1 of TAR2 over the data seen in Fig-
ure 12.

is preferrable if switch 3 in circuit C is not be closed-
since that would violate (say) the warranty on circuit C.
Our analysts therefore agree to the next best treatment,
i.e. Sw2C=off; shown in Figure 13, left hand side (LHS).

4.2 Exploration 2

After constraining the model to Sw2C=off (i.e. by uncom-
menting line 5 in Figure 7), fewer behaviors were gener-
ated: 3,264 as compared to the 35,228 solutions seen pre-
viously. The frequency distribution of the shining lights
in this new situation is shown in Figure 14.

Happily, Figure 14 has the same distribution as Fig-
ure 13.LHS; i.e. in this case, TAR2’s predictions proved
accurate.

Executing TAR2 again finds the next most informative
question, as shown in Figure 15. Here, TAR2 is saying
that our best treatment would be to guarantee that bulb 3
in circuit C is never blown. Perhaps this is possible if

6

Figure 7 when Sw2C=off

0

15

30

45

0 1 2 3 4 5 6 7 8 9

Figure 14: Frequency count of number of bulbs glowing
in the 3,264 solutions of circuits of Figure 7 when
Sw2C=off.

we were to use better light bulbs with extra long life fil-
aments. However, for the sake of argument, we will as-
sume that there is no budget for such expensive hardware.
Hence, to avoid this expense, our analysts agree that al-
ways closing switch 1 in circuit C (as proposed by Fig-
ure 15.LHS) is an acceptable action.

4.3 Exploration 3

After further constraining the model to Sw1C=on (i.e.
by uncommenting line 7 in Figure 7), fewer behaviors
were generated: 648 as compared to the 3,264 solutions
seen previously. The frequency distribution of the shining
lights in this new situation is shown in Figure 16.

Figure 16 has the same distribution as Figure 15.LHS.
That is, once again, TAR2’s predictions proved accurate.
Executing TAR2 again generated Figure 17 and finds the
next most informative question.

The cycle could stop here since the next best treatments
are not acceptable. Figure 17.LHS wants to use overly-
expensive hardware to ensure that bulb 3 in circuit C is
always not blown. Figure 17.RHS wants to use an unde-
sirable action and close switch 3 in circuit C. However,

when Sw2c=off then when Sw2c=off then
if Sw1C=on then ... if B3C=ok then ...

0

15

30

45

0 1 2 3 4 5 6 7 8 9
0

15

30

45

0 1 2 3 4 5 6 7 8 9

Figure 15: Run #2 of TAR2 over the data seen in Fig-
ure 14.

Figure 7 when Sw2C=off and Sw1C=on

0

15

30

45

0 1 2 3 4 5 6 7 8 9

Figure 16: Frequency count of number of bulbs glow-
ing in the 648 solutions of circuits of Figure 7 when
Sw2C=off and Sw1C=on.

our engineers have enough information to propose some
options to their manager: if they increase their hardware
budget, they could make the improvements shown in Fig-
ure 17.LHS. Alternatively, if there was some way to rene-
gotiate the warranty, then the improvements shown in Fig-
ure 17.RHS could be achieved.

To verify this, our engineers continue constraining Fig-
ure 7 to the case of Sw3c=on by uncommenting line 9 in
Figure 7. The resulting distributions looked exactly like
Figure 17.RHS. Further, only 64 solutions were found; i.e.
resolving three of the top treatments proposed by TAR2
constrained our system to one fifth of one percent of its
original 35,228 behaviors.

5 Discussion

The above example assumed an exhaustive enumeration
of the behaviors of our model. As models grow, the num-
ber of such exhaustive behaviors can grow exponentially-
especially for qualitative models. Hence, some sub-
sampling of the total space will be required. Methods for

when Sw2C=off when Sw2C=off
and Sw1C=on then and Sw1C=on then
if B3C=ok then ... if Sw3C=on then ...

0

15

30

0 1 2 3 4 5 6 7 8 9
0

15

30

45

0 1 2 3 4 5 6 7 8 9

Figure 17: Run#3 of TAR2 over the data seen in Fig-
ure 16.

7

sub-sampling for treatment learners are discussed in [8,9].
In summary, sub-sampling can still yield adequate treat-
ments.

In basing our requirements engineering around an non-
deterministic model, we are somewhat at odds with the
conventional wisdom in the requirements engineering
field. For example, the software safety guru Nancy Leve-
son argues that “nondeterminism is the enemy of reliabil-
ity” and proposes that a valid requirements model is deter-
ministic [6]. In the case of safety critical systems where
sufficient resources are available for data collection, Leve-
son’s view is clearly correct. Incremental treatment learn-
ing is more suitable to resource bounded exercises where
data collection can be prohibitively expensive.

6 Conclusion

We have presented one example where answering a very
small number of key questions greatly constrained and
improved the behavior of a qualitative theory. The key
questions were identified by the TAR2 treatment learner.

Our claim, as yet untested,is that this technology will
apply to general business models, provided that they are
executable and some oracle can assess their behavior. We
have several reasons for this optimistism:

� Treatment learning is simple and fast. Further, the
algorithm scales well. Given 200MB of RAM,TAR2
has processed 500,000 examples (with 12 attributes)
in 80 seconds.� While precise deterministic models are slow and ex-
pensive to build, nondeterministic models can be
easily generated by sketching out local intuitions as
qualitative models. Hence, approximate business
models can be built very quickly. Examples of such
approximate business models can be found in [2, 8].
Related work by Feather et.al. [4] and Kaplan & Nor-
ton [5] are also very interesting to us.� The core assumption of treatment learning is that
there exists a small number of attribute ranges that
can have a major impact on the overall behavior of
the system. Elsewhere, we have explored this as-
sumption and have found theoretical and empirical
grounds for believing that the assumptions is widely
applicable [7].

References

[1] I. Bratko. Prolog Programming for Artificial Intelligence.
(third edition). Addison-Wesley, 2001.

[2] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software Engineering.
Kluwer Academic Publishers, 2000.

[3] J. DeKleer and B. Williams. Diagnosing Multiple Faults.
Artificial Intelligence, 32:97–130, 1 1987.

[4] M. Feather, S. Cornford, and T. Larson. Combining the
best attributes of qualitative and quantitative risk manage-
ment tool support. In 15th IEEE International Conference
on Automated Software Engineering, Grenoble, France,
pages 309–312, September 2000.

[5] R. Kaplan and D. Norton. The Balanced Scorecard:
Translating Strategy into Action. Harvard Business School
Press. Boston, 1996.

[6] N. Leveson. Safeware System Safety And Computers.
Addison-Wesley, 1995.

[7] T. Menzies and Y. Hu. Agents in a wild world. In C. Rouff,
editor, Book chapter, submitted to Formal Approaches to
Agent-Based Systems, 2002. Available from http://
tim.menzies.com/pdf/01agents.pdf.

[8] T. Menzies and J. Kiper. Better reasoning about software
engineering activities. In ASE-2001, 2001. Available from
http://tim.menzies.com/pdf/01ml4re.pdf.

[9] T. Menzies and E. Sinsel. Practical large scale what-if
queries: Case studies with software risk assessment. In
Proceedings ASE 2000, 2000. Available from http://
tim.menzies.com/pdf/00ase.pdf.

[10] D. Parnas. On the design and development of program
families. IEEE Transactions on Software Engineering,
March 1976.

[11] R. Quinlan. Induction of decision trees. Machine Learn-
ing, 1:81–106, 1986.

[12] A. van Lamsweerde. Requirements engineering in
the year 00: A research perspective. In Proceedings
ICSE2000, Limmerick, Ireland, pages 5–19, 2000.

8

