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Abstract. When a lack of data inhibits decision making, large scale
what-if queries can be conducted over the uncertain parameter ranges.
Such what-if queries can generate an overwhelming amount of data. In
the case study explored here, machine learning was used to summarize
the output of a Monte Carlo simulation of the COCOMO-II software ef-
fort estimation model. Based on that summary, key risk reduction factors
were identified. Surprisingly, these factors was the same for both small
and large projects suggesting that schedule risk mitigation strategies can
be developed, even if SLOC estimates are inaccurate. This method of un-
derstanding models is general to many application areas.
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1 Introduction

Incomplete information can inhibit decision making. For example, suppose a
software manager wants to reduce the odds of time over-runs on her project. To
perform this task, our manager could use a software effort estimation model like
COCOMO-II (see Figure 1). However, to do so, our manager needs to supply
values for all the variables listed in Figure 2 as well as an estimate for source
lines of code (SLOC). What can our manager do if she is uncertain about some
of those values?

In this paper, we describe a case study with using machine learning to sum-
marize Monte Carlo simulations of COCOMO-II (the terms in italics are defined
below). In summary, we use an intelligent agent to summarize very large scale
“what-if” queries. Surprisingly, it turns out that for the purposes of risk mit-
igation, we can make definite conclusions despite having uncertain data. For
example, we can identify COCOMO factors that are irrelevant to risk reduction.
Further, these irrelevant factors are the same for large SLOC and small SLOC
programs. That is, even though our estimates for SLOC may be very inaccurate,
we still can develop risk mitigation strategies.

This study will make the following assumptions. In this article we focus on
process risk and not product risk. That is, when we discuss “risk”, we do not
mean “time till the next error of severity X” (i.e. the standard view of risk



in reliability engineering). Rather, we define risk as “risk of project schedule
over-runs”. We also make the “coarse-grained” assumption; i.e. risk mitigation
strategies should not be based on fine tuning the details of a project’s structure.
Given the state-of-the-art in software management, we find it improbable that we
will have such fine-grained control of a project. Rather, we seek coarse-grained
changes that can aggressively push a high-risk project into a low-risk zone. Lastly,
our study assumes that the effort-estimation model has been calibrated to the
local conditions (for a discussion on calibration, see Figure 1). That is, the con-
clusions we reach are only relevant to those domains that match the calibrations
of our model. Nevertheless, this paper does offer the following general conclu-
sion: given a model relevant to a domain, it is a simple matter to understand
that model using machine learning and Monte Carlo simulations. Further, while
our case study here relates to COCOMO-II, the methods described below are
broadly applicable. Machine learning over Monte Carlo simulations can be used
to understand any device where (1) we can generate a large number of outputs
very quickly; and (2) we can classify those outputs (for other applications of this
technique, see [3, 8, 10]).

This paper is structured as follows. We begin with brief tutorials on Monte
Carlo methods and machine learning. We then discuss four key problems in com-

The COCOMO project aims at developing at open-source, public-domain soft-
ware effort estimation model. COCOMO has been built using the experience
of the COCOMO team and the project database. According to [4], the current
project database contains information on 161 projects collected from commercial,
aerospace, government, and non-profit organizations. As of 1998, the projects rep-
resented in the database were of size 20 to 2000 KSLOC (thousands of lines of
code) and took between 100 to 10000 person months to build.

COCOMO measures effort in calendar months where one month is 152 hours
(and includes development and management hours). The core intuition behind
COCOMO-based estimation is that as systems grow in size, the effort required
to create them grows exponentially; i.e. ef fort o« KSLOC®. More precisely, the
core COCOMON-II effort estimation equations is:

17
months = a * (KSLOC(1'01+E?=1 SF")) * H EMj)
=1

where a is a domain-specific parameter, and KSLOC is estimated directly or
computed from a function point analysis. SF; are the scale factors (e.g. factors
such as “have we built this kind of system before?”) and EM; are the cost drivers
(e.g. required level of reliability). Figure 2 lists all the SF; and EM;.

Software effort-estimation models like COCOMO-II should be tuned to their local
domain. Off-the-shelf “untuned” models have been up to 600% inaccurate in
their estimates; e.g. [7, pl65] and [5]. However, tuned models can be far more
accurate. For example [4] reports a study with a Bayesian tuning algorithm using
the COCOMO project database. After Bayesian tuning, a cross-validation study
showed that COCOMO-II model produced estimates that are within 30% of the
actuals, 69% of the time.

Fig. 1. Some background notes on COCOMO-II. For more details, see [1]



Acronym |Can Definition Low-end Medium High-end
change
acap |yes analyst capability [worst 15% 55% best 10%
aexp |maybe |applications 2 months 1 year 6 years
experience
cplx  [no product e.g. simple|e.g. use of simple|e.g. critical real-
complexity read/write interface widgets |time systems
data |no DB size (DB|10 100 1000
bytes/ SLOC)
docu |no documentation |many phases extensive reports,
undocumented full life-cycle
flex |yes development rigorously defined [some relaxed|only general goals
flexibility guidelines
ltex |yes language, tool-set|2 months 1 year 6 years
experience
pcap |yes programmer worst 15% 55% best 10%
capability
pcon |no % personnel [48% 12% 3%
change per year
pexp |yes platform 2 months 1 year 6 years
experience
pmat [no process maturity |{CMM level 1 CMM level 3 CMM level 5
prec |yes precedentedness |never built this|somewhat new |thoroughly
software before familiar
pvol [maybe | PeommerangEr | I montrs L Ty
( qu’or c}hl,anges )
minor _changes
rely |no required errors mean slight|errors are easily|errors can risk hu-
reliability inconvenience recoverable man life
resl |yes architecture  or|interfaces known,|=most all defined /used
risk resolution risk removed=few|defined /removed
ruse |maybe |required reuse none across program |across  multiple
product lines
sced |yes required develop-|75% of original|no change 160% of original
ment time estimate estimate
site |yes multi-site some contact:|some email interactive multi-
development phone, mail media
stor |yes main storage con-|N/A 50% 95%
straints (RAM%)
team |yes team cohesion very difficult |basically seamless
interactions co-operative interactions
time |yes execution  time[N/A 50% 95%
(CPU%)
tool |yes use of software|edit,code,debug well intergrated
tools with lifecycle
Fig.2. Parameters of the COCOMO-II effort risk model; adapted

from http://sunset.usc.edu/COCOMOII/expert_cocomo/drivers.html.
“Can change” denotes the variables that we and Boehm [2] declare can be
changed during a project.




bining these methods: stability, similarity, satisfactory-ness, and summarization.
Finally, we show the factors in our COCOMO-II model which are not usually
useful in developing coarse-grained risk mitigation strategies for 100 KSLOC and
20,000 KSLOC projects.

2 An Introduction to Monte Carlo Simulations

Woller [11] defines Monte Carlo methods as follows:

Monte Carlo (MC) methods are stochastic techniques—meaning they are
based on the use of random numbers and probability statistics to in-
vestigate problems. You can find MC methods used in everything from
economics to nuclear physics to regulating the flow of traffic.

Traditionally, MC methods were used for mathematical integration. For ex-
ample, to compute the value of 7 using MC, we might ask a very bad darts player
to throw darts at Figure 2. In this approach, our darts player is a stochastic gen-
erator of the data. Assuming all the darts land within the square of Figure 2.A,
then the ratio of darts hitting the circle will be:

# darts hitting circle _ wr?
# throws T (2r)2

which we can rearrange to

4 x # darts hitting circle
™=

# throws
4 Rt T T T
s
k]
E i=3.141
T b pi=3.
2r -
=
£
\ / 3 25 - 8
2r
2 1 1 1 1
1 10 100 1000 10000
# of throws
Figure 2.A: A circle of radius r within Figure 2.B: Finding 7 using MC meth-
a square of side 2r. From [11]. ods; i.e. throwing darts at Figure 2.A
and applying Equation 1. Adapted
from [11].

Note that the results of an MC study can be skewed by inadequate sampling.
If our darts player only makes a few throws, our value for 7 will be inaccurate.
Figure 2.B shows how the value of Equation 1 varied as a computer program
simulated the darts player. The value for n seen after 10 “throws” was very
different to the value seen after 1000 “throws”. However, after 5000 “throws”,
the value stabilized; i.e. more throws did not significantly change the value. The



general lesson from this example is that the sample size of an MC study must
be extended until the conclusions stabilize.

Apart from mathematical integration, MC can be used to perform large-scale
“what-if” queries. Theoretically, by studying the results from an MC simula-
tion over the uncertain COCOMO-II input values, a software manager manager
could:

— Detect what combination of the uncertain values will lead to schedule over-
runs.

— Determine effort-risk mitigation strategies. For example, our manager might
see that if a single parameter (e.g. time in Figure 2) is changed, then the
estimate of the time to complete the project can be reduced.

Unfortunately, practical considerations may prevent the recognition of schedule
over-run factors or the determination of effort-risk mitigation factors:

— COCOMO-II factors are rated on scale with, on average, 5 points: “very low,
low, nominal, high, very high”.

— Suppose our manager is uncertain on half the 22 factors in Figure 2. A full
MC study would require up to 5! a 50,000, 000 runs. That is, our manager
might be overwhelmed with by a mountain of information.

We now face a dilemma. On the one hand, if we use large samples for our
MC studies, our decision makers may be overwhelmed with information. On the
other hand, if we don’t use large sample sizes, the conclusions may not stabilize
(recall that our value for 7 did not stabilize till after 5000 samples). The rest of
this paper tries to resolve this dilemma as follows:

— Use large scale MC runs to collect the data.
— Use machine learning to summarize that data.

3 Machine Learning for Data Reduction

This section introduces decision tree learners using notes from [9].

(4.5 is an algorithm that learns decision trees from examples. It is an interna-
tional standard in machine learning: most new machine learners are benchmarked
against this program. Decision tree learners work from classified examples such
as lines 1-15 of Figure 3. C4.5 uses a heuristic entropy measure of information
content to build its trees. The parameter range with the most information con-
tent is selected as the root of a decision tree. The example set is then divided up
according to which examples do/do not satisfy the test in the root. For each di-
vided example set, the process is then repeated recursively. A statistical measure
is then used to estimate the classification error on unseen cases.

For example, consider lines 16-24 in Figure 3. In this tree, C4.5 has decided
that the weather outlook has the most information content. Hence, it has placed
outlook at the root of the learnt tree. If outlook=rain, a sub-tree is entered
(lines 21-22). In the outlook=rain sub-tree, the critical next parameter was
wind. On line 21 we read that we should not play golf on high-wind days when it
might rain. Note the error estimate on line 24. C4.5 estimates that this tree will
lead to incorrect classifications 38.5 times out of 100 on future cases. We should
expect such a large classification errors when learning from only 15 examples.



INPUT:

01. #outlook, temp, humidity, windy, class

02. sunny, 85, 85, false, dont_play
03. sunny, 80, 90, true, dont_play
04. overcast, 83, 88, false, play

05. rain, 70, 96, false, play

06. rain, 68, 80, false, play

07. rain, 65, 70, true, dont_play
08. overcast, 64, 65, true, play

09. sunny, 72, 95, false, dont_play
10. sunny, 69, 70, false, play

11. rain, 75, 80, false, play

12. sunny, 75, 70, true, play

13. overcast, 72, 90, true, play

14. overcast, 81, 75, false, play

15. rain, 71, 96, true, dont_play
OUTPUT:

16. outlook = overcast: Play
17. outlook = sunny:

18. |  humidity <= 75 : Play

19. |  humidity > 75 : Don’t Play
20. outlook = rain:

21. | windy = true: Don’t Play
22. | windy = false: Play

23.

24. ESTIMATED ERROR ON UNSEEN CASES: 38.5%

Fig. 3. Decision-tree learning. Classified examples (above) generate the decision tree
(below).

In general, C4.5 needs hundreds to thousands of examples before it can produce
trees with low classification errors.

Recall that C4.5 selects the parameter ranges for the tree using an infor-
mation theoretic measure. That is, potentially, the algorithm can reduce large
example sets. Parameter ranges with high information content appear high in
the tree (e.g. outlook). Similarly, attribute values with low information content
may disappear from the tree all together. For example, note that temperature
does not appear in the learnt trees of Figure 3.

4 MC and C4.5

This section explores the following idea: if C4.5 can reduce large data sets, per-
haps it can assist us with MC studies of COCOMO-II models. In order to stress
test this technique, we assumed that our manager knows none of the values for
the 22 COCOMO-II input parameters; i.e. our MC study may have to execute
COCOMO-II up to 522 ~ 10'5 times.

We estimate that to run a COCOMO-II model 10'® times would take a



century to execute®; i.e. it is not practical to explore 10'® input combinations
to COCOMO-II. Hence, we ran COCOMO-II using randomly selected inputs.
Like any MC study, this implied that we had to keep increasing our sample sizes
until we detected stability in our conclusions.

The details of our approach are shown in Figure 4. In summary, we built some

01. model < "cocomoII"
02. sampleSize < 1000
03. i +— 1

04. repeat forever
05. {forj <~ 1to5

06. { repeat sampleSize number of times

07. { in < random selection of model inputs
08. out < call(model,in)

09. }

10. tree[jl < c45(in,out)

1. }

12. forj < 1to5
13. {fork ¢« j+1to 5

14. { delta[i] ¢ deltalil+compare(tree[j],treelk])
5. } }

6. if (1> 2 and

17. similar(deltalil) and

18. satisfactory(tree[1]) and

19. stable(deltal[i]l, deltal[i-1], deltal[i-2]1))
20 then return summarize (tree[1])

21, else {i ¢« i+1

22. sampleSize < 2 * sampleSize.

23. }

2. fi

25. }

Fig. 4. MC-based machine learning

decision trees using some randomly selected inputs to a COCOMO-IT model
(lines 5-11). Next, for all pairs of our trees, we collected a list of differences
(a.k.a. deltas) between them (lines 12-15). At lines 16-19, we check for:

Similarity: Are all our trees telling us roughly the same thing? If so, then we
are using enough examples to capture the semantics of the model.

Satisfactory: In Figure 3, we saw that C4.5 can generate trees with large clas-
sification errors. That is, when we assess learnt trees, we should ensure that
their classifications are sufficiently accurate. Note the use of tree[1] at line
18. By line 18, we have demonstrated tree similarity. Hence, testing any one
of the learnt trees will let us assess all the trees.

Stability: Are the trees we see at iteration i telling us roughly the same thing
as iterations i-1 and i-27 If so, then we declare that the conclusions reached

3 Assuming we can run COCOMO-IT one million times per second, then if a year is

~ 107 seconds, our 10'® runs would take 1—016%7 =10% = 100 years.



by this MC method have stabilized.

If we can’t demonstrate that are trees are similar, stable, and satisfactory, then
we double the sample size and start over again at line 5. Otherwise, we can use
any of the trees learnt at iteration i as our output (line 20). Note the summarize
function at line 20: this function reports decision trees in a format useful to a
software manager.

To implement Figure 4, several practical issues had to be addressed:

1. We needed a working version of COCOMO-II which we could run hundreds
of thousands of times.

2. C4.5 works using classified examples (recall lines 1-15 of Figure 3). Where
are we to get the classifications?

3. How exactly do we test that our trees are similar, stable, and satisfactory?

4. What is the best format for summarizing the trees?

This issues are addressed below.

4.1 Accessing a COCOMO-II model

For our experiments, we used the Madachy COCOMO-based effort-risk model [6]
(Dr. Madachy is one of the authors of the COCOMO-II model description [1]).

The Madachy model was an experiment in explicating the heuristic nature of

effort estimation. The model contains 94 tables of the form of Figure 5. Each

such table implements a context-dependent modification to internal COCOMO

parameters.

An important feature of the Madachy model is that it generates a numeric
effort-risk index. Studies with the COCOMO-I project database have shown that
this index correlates well with '?[”,ghf (where KDSI is thousands of delivered
source lines of code) [6].

4.2 Classifying COCOMO-II Outputs

According to Madachy, his risk index can be classified as follows: “low effort-
risk” (index < 5), “medium effort-risk” (5 < index < 15), or “high effort-risk”

rely
very low|low|nominal |high|very high
sced= very low 0 0 0 1 2
sced= low 0 0 0 0 1
sced= nominal 0 0 0 0 0
sced= high 0 0 0 0 0
sced= very high 0 0 0 0 0

Fig.5. A Madachy factors table. From [6]. This table reads as follows. In the excep-
tional case of high reliability systems and very tight schedule pressure (i.e. sced=low
or very low and rely= high or very high), add some increments to the built-in pa-
rameters (increments shown top-right). Otherwise, in the non-exceptional case, add
nothing to the built-in parameters.



01. sced = 0

02. | pcon <= 1 : medium

03. | pcon >1:

04. | | cplx <= 1 : high

05. | I cplx > 1 :

06. | | | tool <= 3 : medium

07. | | | tool >3 : high

08. sced > 0

09. | acap <=

10. | | rely <=3

11. | | | stor <= 4

12. | | | | acap = 0 : medium

13. | | I | acap >0

14. | | | | | ruse > 2 : medium
5. 1 | | | | ruse <=2 :

16. | | I I I |  docu <=2 : low
17. | | | | | | docu > 2 : medium
18. | | | stor = 5 :

19. | | | |  pcon <= 2 : high

20. | I I |  pcon > 2 : medium

21. | | rely > 3 :

22. | | | pcap <= 2 : high

23. | I |  pcap > 2 : medium

24. | acap > 1

25. | |  pcap <=1 :

26. | I | pmat > 2 : medium

27. | | | pmat <=2 :

28. | | | | sced > 3 : medium

29. | | | | sced <= 3 :

30. | | | | | cplx <= 1 : medium
31. | I I I |  cplx > 1 : low

32. | | pcap > 1:

33. | | | ruse <= 2 : low

34. | | | ruse > 2 :

35. | | | | time = 5 : medium

36. | | | |  time <= 4 :

37. | | | | | pexp <= 1 : medium
38. | | | | |  pexp > 1 : low

39.

40. ESTIMATED ERROR ON UNSEEN CASES = 25.4j

Fig. 6. A decision tree of 39 nodes generated from 125 randomly selected inputs to CO-
COMO-II with KSLOC=100. Parameters are ranked on the scale 0=very low; 1=low;
2=nominal; 3=high; 4=very high; 5=extremely high.

(index > 15). The Madachy tool is a CGI-based tool (see http://sunset.usc.
edu/COCOMOII/expert_cocomo/). After downloading the C-source code, we re-
moved the HTML components and added some shell scripts. The result was
a command-line interface version that accepted COCOMO-II input parameters
and outputed a classification: “low”, “medium”, “high”. With this tool, we could
generate millions of classified COCOMO-II outputs in under an hour. From these



outputs, we could learn decision trees such as Figure 6.

4.3 Detecting Satisfactory Trees

Figure 7 shows the effects of increasing sample size on tree size and classifica-
tion error. As sample size grows, the estimated error on unseen cases decreases
exponentially while the tree size grows linearly. We conclude that there is some
benefit in using sample sizes of tens of thousands, but probably little benefit in
moving above 20,000 samples.

These plots also serve to introduce why we need the summarize function of
Figure 4, line 20. If we sample 20,000 times, we will be generating trees 100 times
bigger than Figure 6 (recall that Figure 6 was generated from 125 samples). Such
large trees need to be condensed in order to make them human readable.

4.4 Summarizing Trees

This section describes heuristics for summarizing large decision trees. To illus-
trate these heuristics, we use Figure 8 which was manually created for demon-
stration purposes.

Focus on risk mitigation strategies: One goal of our research is the generation
of risk mitigation strategies. Hence, we need only report those parts of the trees
that show us how to change a projects risk from RISK; to RISK,. For example,
suppose our machine learner had generated Figure 8. If a project arrives at line 9
of Figure 8, then it is a high-risk project and RISK; = high. One risk mitigation
strategy might be to reduce the CPU time requirements (i.e. make time < 4).
This strategy would convert RISK; = high at line 9 to RISK; = medium at
line 8.

Focus on “powerful” risk mitigation strategies: We can further condense our
trees if we focus only the strategies that can drive a high risk project to a low risk
project; i.e. RISK; = high and RISK> = low. Adopting this heuristic means
we would ignore the “reduce CPU time requirements” described above since this
merely converts us from RISK; = high to RISK; = medium. A more powerful
risk mitigation strategy would be to target RISK; = low at line 19. Figure 9
discusses the implications of this strategy.

Ignore impossible changes: Column 2 of Figure 2 reports which COCOMO-II
factors can not be changed within the lifetime of one software project: cplx,
data, docu, pcon, pmat, rely. We will exclude all risk mitigation strategies
that require us to change these unchangeable parameters. Continuing our exam-
ple, we note that none of the changes in Figure 9 are impossible.

Focus only on “coarse-grained” strategies: Most software managers only have
a very coarse-level of control of their projects. Hence, some of the fine-grained

Estimated error (%)

25 T T T ] 4000 T T T

%, 8 3000 |
20 o - 32

Oy £ 2000 .

15 | o - p § 1000 7
lo 1 1 1 0 1 1 1

0 5000 10000 15000 20000 5000 10000 15000 20000

Sample size Sample size

Fig. 7. Changes to sample size, estimated error, and tree size.



details required by Figure 9 are improbable. For example, the strategy reported
in Figure 9 requires us to hold the project schedule at exactly 0.75; i.e. sced=0.
This strategy was based on the Figure 8 sub-tree starting at line 11. Any increase
to our schedule (i.e. sced>0), throws us into the Figure 8 sub-tree starting at
line 20 and invalidates the Figure 9 strategy. Hence, we will not report such risk
mitigation strategies and only display coarse-grained pivotal changes. For our
purposes, we declare that a pivotal change is coarse if it includes one end value
and at least two range values. Such pivotal changes serve to divide the total range
of a parameter into two sets: useful and useless Hence, (e.g.) acap < 3 is coarse
but acap = 2 is not. Note that if we restrict ourselves to coarse-grained strategies,
then we must discard Figure 9. Figure 10 shows the only coarse-grained powerful
risk mitigation strategy of Figure 8. Note the good news: we can reduce risk while
using less experienced programmers (see the changes made to pcap).

Report only “pivotal values”: A pivotal value is some parameter change that
can drive a high risk project to a low risk project. Figure 10 shows the following
pivotal values: acap>0, sced>1, pcap> 0. If we report only pivotal values, we
are reporting all the changes that are effective and powerful risk mitigation
strategies.

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.

acap = 0 :
[
I
[
[
I
I
I
[
a
[
12. |
[
I
[
I
[
I
[
[
I
I
[
I
[
I
[

sced = O:high
sced > 0
| pcap <= 1:high
|  pcap > 1
| | cplx > 3:high
| | cplx <=3
I |  time <= 4:medium
[ | | time = 5:high
cap > 0
ced = 0
pcap = O:medium
pcap > 0
|  time = 5: medium
time <= 4
| aexp = O:medium
| aexp >0
| | ltex = O:medium
| | ltex > O:low

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

ltex < 1 :medium
ltex >= 1

| sced <= 1:medium
| sced > 1

| | ruse <= 4:low
|

S
I
I
I
I
I
I
I
I
S
I
I
I
I
I
I
I

| ruse > 4:medium

Fig. 8. An artificially generated decision tree, built for demonstrated purposes. Pa-
rameters are ranked as per Figure 6.



old |line|new|line|comments
acap|=0| 1 [> 0| 10 |Small increase required
sced |[> 0| 3 |=0] 11 |Can reduce risk while delivering earlier.
pcap|> 1| 5 |> 0| 13 [Can reduce risk while using less-skilled programmers.
cplx <3| 7| - | - |Irrelevant to changing risk
time|=5| 9 |< 4|15 |Have to decrease CPU requirements
aexp| - | - |> 0] 17 |your analysts can’t be novices
Itex | - | - |> 0] 19 |Schedule training sessions for your tools

Fig.9. Comparing a RISK; = high project at line 9 of Figure 8 to a RISK> = low
project at line 19 of Figure 8. Line numbers refer to line numbers of Figure 8.

old (line|new|line|comments
acap|=0] 1 |> 0| 10 |Small increase required
sced |[> 0| 3 [> 1| 25 |To reduce risk, need more development time.
pcap|>1| 5 |> 0| 13 |Can reduce risk while using less-skilled programmers.
cplx |[<3| 7 | - | - |Irrelevant to changing risk
time|=5| 9 | - | - |No need to decrease CPU requirements
Itex | - | - |> 1] 23 |Schedule training sessions for your tools, and hire in one guru
in your toolset.
reuse| - | - [< 4|26 |Don’t try to develop reusable components across product lines.

Fig.10. Comparing a RISK; = high project at line 9 of Figure 8 to a RISK> = low
project at line 26 of Figure 8. Line numbers refer to line numbers of Figure 8.

4.5 Measuring Stability and Similarity

The above discussion has dealt with classification and how to summarize a tree.
This section deals with the remaining technical issues of Figure 4: stability and
similarity.

We begin by observing that each pathway in a decision tree from the tree
root to a leaf is a logical rule. To compute stability and similarity, we annotate
every pair of such rules with one of four terms, described below: clashes, same,
shrinks-X, and grows-Y.

“Sames” detects logical equivalence. Equivalence can be reported if the same
pathway exists in two trees.

“Shrinks-X” detects a special case of logical subsumption. Consider rulel
which came from some learnt decision tree treeA:

rule 1 from treeA
if analyst capability is very low

and schedule pressure is very tight
then risk=high

Suppose another tree called treeB contained the pathway:

rule 2 from treeB

if analyst capability is nominal or low or very low
and schedule pressure is very tight

then risk=high



We say that treeA “shrinks-2” from treeB; i.e. when we compare rule2 in
treeB to rulel in treeA, we see that two range points for analyst capability
has been removed (the references to low and nominal).

“Grows-Y” detects another special case of logical subsumption. Whereas
Shrinks-X detects parameter ranges shrinking, grows-Y detects the number of
parameters increasing. For example, suppose a tree called treeC contained the
pathway:

rule 3 from treeC
if  analyst capability is nominal or low or very low
and schedule pressure is very tight
and language and tool experience is very limited
then risk=high

Note that rule3 is the same as rule2, but mentions one extra parameter;
i.e. language and tool experience. From this comparison of rule3 in treeC and
rule?2 in treeB, we say that treeC grows-1 from treeB.

“Clashes” detects logical contradictions. Consider rule4:

rule4 from treeD

if analyst capability is very low
and schedule pressure is nominal

then risk=high

We say that treeD “clashes” with treeA since there exists one rule in treeD
and one rule in treeA with the same conclusion but conflicting pre-conditions
(nominal schedule pressure in rule4 versus very tight schedule pressure in rulel).
If two rules clash, we do not explore shrinks-X or grows-Y.

With these definitions in hand, we can now describe the deltal[i] set com-
puted at line 14 of Figure 4. For each pair of pathways from each tree being
compared, all the clashes, sames, shrinks-X, and grows-Y are found and added
to the delta[i] set. Internally, these are stored as frequency counts. For exam-
ple, if the pathway comparisons generated:

{grows-2, grows-2

shrinks-1, shrinks-1, shrinks-1,
grows-3,

clashes, clashes

same, same, same}

then this is stored internally as:

delta[il= {grows-2 =2
shrinks-1 = 3
grows-3 =1
clash =2
same = 3}

Figure 11 shows how deltal[i] changed as we increased the sample size. In
terms of detecting stability, Figure 11 shows that our comparison measures all
plateau at sample size > 5000 (execption: shrink-1). That is, our conclusions are
stable above that point. In terms of detecting similarity, clearly clashes and sames
are most important and shrinks-X and grows-Y are least important. However,
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Fig. 11. Frequency counts of members of delta[il (y-axis) vs sample size (x-axis).

the shrinks and grows measures let us assess the degree to which our trees
subsume each other. Note that at sample size > 5000, the clashes are rare and
the sames are common. Further, the shrinks-X and grows-Y values are very
low; i.e. {X,Y} € {1,2}. That is, at sample size > 5000, the trees only slightly
subsume each other.

In summary, at sample size > 5000, we can confirm similarity and stability.
Nevertheless, we will use sample sizes of 20, 000 since we argued above that this
generated satisfactory trees.

5 Results

Having determined the best sample size, and having implemented tools to re-
port the possible pivotal changes of powerful risk mitigation strategies, we next
performed two studies:

Effort risk for programming-in-the-small: Summarize an MC simulation
where KSLOC=100; i.e. small programs.

Effort risk for programming-in-the-large: Summarize an MC simulation where
KSLOC=20,000; i.e. large programs.

For each study, we counted the number of times a COCOMO-II parameter ap-
peared in a possible pivotal change in a powerful risk mitigation strategies (i.e.
can drive a high-risk project to a low-risk project). This generated (e.g.) Xscea
number of reports where some parameter (e.g.) sced was pivotal. The frequency



KSLOC=20,000{ KSLOC=100
sced 16.3 % 18.0 %
acap 15.9 % 16.0 %
time 15.4 % 13.0 %
pcap 15.4 % 16.8 %
tool 10.2 % 9.8 %
reuse 7.8 % 9.2 %
stor 5.8 % 4.4 %
aexp 5.7 % 5.8 %
Itex 5.2 % 41 %
pexp 1.2 % 1.7 %
pvol 04 % 02 %
team 0.2 % 0.2 %
site 0.1% 0.1 %
prec 0.1 % 0.2 %
flex 01 % 01 %

Fig. 12. Percentage of times a parameter appears as a pivotal change in a powerful
risk mitigation strategy. Sorted by column 2.

counts for each parameter was then expressed as percentage of the total reports

i.e.
X;ix1
percentage(X;) = %00
Zj:l X

where X; was one of the 16 parameters that we can change within a project
(see the parameters marked ”yes” or "maybe” in the ‘changeable?” column
of Figure 2). The results are shown in Figure 12. The parameters that appear
high in Figure 12 were often pivotal in converting high-risk projects into low-
risk projects. That is, for projects that match the calibrations of Madachy’s
COCOMO-II risk model, the factors that often change high-risk projects to low-
risk are:

— schedule pressure (sced)- most critical

— analyst capability (acap)- next most critical

— CPU requirements (time)

— programmer capability (pcap)

— the integration of tools with the software life-cycle (tool)
— the required level of reuse (reuse)

— RAM requirements (stor)

— analyst experience (aexp)

— experience with the language and toolset (1tex).

Hence, when designing risk mitigation strategies, we would tend to focus on
these factors. Further, we would tend to avoid the parameters at the bottom of
Figure 12 such as programmer experience pexp, platform volatility pvol, team
cohesion team, multi-site development site, precedentedness prec, and process
flexibility flex.

Note that factors like process maturity (pmat) do not appear in Figure 12
since they can never be pivotal (recall that pmat is one of the parameters marked
"no” in the “changeable?” column of Figure 2).



Comparing columns 2 and 3 of Figure 12, we see that approximately the
ranking of parameters appears for small projects (KSLOC=100) as for large
projects (KSLOC=20,000). This is an exciting result since it suggests we can
assess effort-risk even when we lack accurate estimates for KSLOC.

6 Conclusion

When we are unsure of a particular value, we should execute what-if queries over
the range of our uncertainty. However, such a what-if query can overwhelm a user
with information. For example, a full simulation of COCOMO-II would require
10'5 runs. We have shown here that small random samples from a Monte Carlo
simulation can generate satisfying, stable, and similar decision trees. However,
these trees can still be very big: the trees we learnt from 20,000 COCOMO-II
samples was 3000 nodes; i.e. 100 times bigger than Figure 6. While a computer
program could execute such a structure, human beings have a hard time process-
ing that much information. Hence, we need to summarize the summary generated
by decision tree learners. The following heuristics proved useful in reducing two
3000 node decision trees down to Figure 12:

— Only report the pivotal parameters that . ..

— ... appear in coarse-grained risk mitigation strategies ...

— ... that can drive a project from high-risk to low-risk . ..

— ... without requiring some impossible change to a project feature.

We stress again that the rankings shown in Figure 12 apply to those projects
which match the COCOMO-II parameter settings within the Madachy model.
However, given other parameter settings, the above analysis could easily be re-
peated to generate other powerful risk mitigation strategies. We view this as a
strength of our technique: mitigation strategies can be customized to the partic-
ulars of different domains.
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